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THE ASYMPTOTIC EXPANSION OF BESSEL
FUNCTIONS OF LARGE ORDER

By F. W. J. OLVER, The National Physical Laboratory

(Communicated by Sir Edward Bullard, F.R.S.—Received 22 February 1954)
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New expansions are obtained for the functions I,(vz), K,(vz) and their derivatives in terms of
elementary functions, and for the functions J,(vz), ¥,(vz), H"(vz), H?(vz) and their derivatives
in terms of Airy functions, which are uniformly valid with respect to z when |»| is large. New
series for the zeros and associated values are derived by reversion and used to determine the
distribution of the zeros of functions of large order in the z-plane. Particular attention is paid
to the complex zeros of Y,(z) and the Hankel functions when the order 7 is an integer or half an
odd integer, and for this purpose some new asymptotic expansions of the Airy functions are
derived. Tables are given of complex zeros of Airy functions and other quantities which facilitate
the rapid calculation of the smaller complex zeros of Y, (z), Y,(z), and the Hankel functions and
their derivatives, when 2z is an integer, to an accuracy of three or four significant figures.

) ¢

7~

.—1 { 1. INTRODUCTION AND SUMMARY

;5 b The theory of the preceding paper (Olver 1954) may be applied to Bessel’s differential
@) E equation to produce asymptotic expansions of the functions J,(vz), ¥,(vz), H{" (vz), H® (vz)
R and their derivatives in terms of Airy functions, which are uniformly valid with respect to z
E 8 when | v | is large. In this paper these expansions are considered in detail, together with the
[ expansions of the zeros and associated values which are obtained from them by reversion.

Similar expansions for the functions (but not for the derivatives or zeros) have also been
given in a recent paper by Cherry (1950).

Other forms of expansion of Bessel functions of large order are those of Debye and
Meissel (see, for example, Watson 1944, pp. 235-248) and the present writer (1952),
which are valid when |z—1[>|v|™, [z—1]|<]|v|* and |z—1|<|v |} respectively.
Because of the property of uniformity there are no such restrictions on the expansions of
this paper, which are, moreover, more powerful than the earlier forms, particularly near
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BESSEL FUNCTIONS OF LARGE ORDER 329

the transition points z=-+1. In consequence, the new expansions are of considerable
computational importance, and to facilitate their application comprehensive tables of
the coefficients have been prepared for real arguments and orders and will be published
elsewhere.

The investigation of the zeros of functions of large order has been rather difficult with the
existing expansions for the functions. The only explicit series which have been given are
those of McMahon (Watson 1944, pp. 505-506; also Bickley & Miller 1945) for the very
large zeros, and those of the present writer (1951, 1952) which give the expansion of real
zeros of fixed enumeration in the form

ntognttoan i+ ..., (1-1)

whereT n=v and «,, a,, ... are numerical constants. The values of these constants increase
for the larger zeros, and expansions of this form are useful only for the smaller zeros. Other
series could be obtained by reversion of Debye’s expansions, but they would not be valid
for indefinitely large orders if the enumeration is kept fixed.

The series given below do not have these disadvantages. The asymptotic expansion of
a zero of fixed enumeration is evolved in the form

vpo(v=ia) +v7ip (Vi) + (v ) +- (1-2)

where a is the corresponding Airy function zero, and the coefficients py({), p;(), ..., are
transcendental functions of the argument {=v~*¢ which may be pretabulated. The expan-
sion (1-2) is uniformly valid with respect to all the zeros and numerically it is very powerful;
it is effectively a power series in »~2 in which the early coefficients actually decrease in
magnitude. In addition to numerical applications the new series are of theoretical value
in determining the asymptotic distribution of complex zeros of Bessel functions of large
orders, both real and complex, and lead to some new and interesting results. It is found,
for example, that if z is a positive integer, then in the domain |argz|<# the function
Y, (nz) has, in addition to its infinite set of real positive zeros, two infinite strings of zeros
asymptotically near to the negative real axis, together with 27 zeros asymptotically near
to the boundary of an eye-shaped domain in the z-plane whose extreme points are atz = - 1.

For completeness an account is also given of the analogous asymptotic expansions of the
modified Bessel functions 7,(vz) and K,(vz). These expansions, which are in terms of ex-
ponential and not Airy functions, may be obtained from the Debye expansions for J,(vz)
and H®(vz) for complex arguments and orders (Watson 1944, pPp. 262-268), but in this
paper they will be derived from the defining differential equation. The only previous account
of this approach appears to be that of Lehmer (1945) with corrections by Miller (1943),
which deals briefly with I, (z) for real arguments and orders. The modified Bessel functions
are considered first because their asymptotic theory is simpler than that of the Bessel
functions themselves.

The arrangement of the paper is as follows. The expansions of I,(nz), K,(nz) and their
derivatives for large positive orders are given in § 2. The extension of these results to complex
orders is considered in § 3.

1 Here and elsewhere in this paper we use the convention that when the symbol 7 is used to denote the
order of the Bessel functions it is real and positive.
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330 F. W. J. OLVER ON

In §4 expansions are developed for J, (nz), Y, (nz), HY (nz) and H? (nz) when the order
is large and positive, and in § 5 these results are extended to include complex orders. The
coeflicients in these expansions are defined by recurrence formulae, and explicit expressions
for them are obtained in § 6. This section also contains expansions for the derivatives of the
Bessel functions.

Zeros are investigated in §§ 7, 8, 9 and 10. The asymptotic expansions of §§ 4, 5 and 6 are
reverted in § 7 to give series for the zeros of J,(z) and J,(z) and the respective associated
values of J,(z) and J,(z). The corresponding expansions for Y,(z) and ¥, (z) are considered
in§ 8, with particular reference to the complex zeros of these functions when 27 is an integer,
and a similar investigation of the zeros of the Hankel functions and their derivatives is made
in§9. In §10 tables are given which facilitate rapid calculation of approximate values of
the complex zeros of Y, (z), Y, (z), the Hankel functions and their derivatives, and examples
are given of their application.

Certain properties of the Airy functions Ai and Bi are frequently used in the paper.
Since they do not all appear to be well known, particularly in the case of Bi, they have been
collected together and given in the Appendix.

2. THE EXPANSIONS OF [,(nz) AND K,(nz) FOR LARGE POSITIVE ORDERS

The functions z![ (nz) and z!K, (nz) satisfy the differential equation

d2w 1422 1
@”—:{( 22 )722—12—5}11} (2'1)

This equation has transition points at z = 0, --i. We shall suppose throughout this section
that zis confined to the half-plane | arg z | < {7; the results obtained may always be extended
subsequently to other phase ranges not including the imaginary axis? with the aid of the
continuation formulae

Iv(z em#i) = emvai IV(Z>, l

. . . (22)
K, (zem) = e-mm K (z) —misin mym cosecvm [,(z), |

m being an arbitrary integer.
Following the procedure described in the preceding paper (§2, cases A and C), we make
simultaneous changes of variables in (2-1) from w, z to W, { respectively, given by

df\2 1422 _(dz\TE 1423\ ; )
@ = = () @)
Then W satisfies the equation
dzw )
G = EHAOW, (24)
2, d? . d
where f§) = ——éJrz*aZQ (z27Y), zsaéz—,. (2-5)

+ Expansions which include the imaginary axis in their region of validity are of a different kind; they
may be obtained from the results given later in §§ 4 and 5 by means of the relations

L(z) = et J (zetrh), K, (z) = §mi el HP(zelmt).
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BESSEL FUNCTIONS OF LARGE ORDER 331

The first of equations (2-3) may be integrated to give

{=J(1+22)+In — (2-6)

1+/(1+22) (1 +22)°
it being convenient to take the arbitrary constant of integration equal to zero. This relation
maps the half-plane |arg z | <}n conformally on the domain D comprising the half-plane
(>0 and the half-strip | .#{| <im, #{<0. Corresponding points of the transformation
are indicated in figures 1 and 2.

F
E1
DL
D/ /C B A
Ey-i
FI
Ficure 1. z-plane. Ficure 2. {-plane.

~ Substituting the first of (2-3) in (2-5) we find, after a little reduction, that
22( 4— z2)
Thus f(§) is a regular (holomorphic) function of { in D. Moreover, from (2-6) it is seen that
z~{ as | {|—o0 in the right-hand half-plane, and if { lies in the strip | #{| <im, 2{<0,
then z~2eé"!as | {|+c0. Hence
S =0o(¢]3) (2-8)

as | {| =00 in D, uniformly with respect to arg{.
Thus the preliminary conditions are satisfied for the application of theorem At to
equation (2-4). Let D’ denote the part of D bounded by the lines

fC:i(%—ﬂ—b‘), AL, 92@:3, Ij§l>%n~3:
where 0 <0< {n; these boundaries are indicated by the broken lines in figure 2. Then by
taking a,, 4, to be the points at infinity on the negative and positive real axes respectively,

the domains D, and D, of theorem A coincide with D’ itself. Accordingly, if a sequence of
coefficients} {U,({)} is defined by the equations U,({) = 1 and

Upnl) = =300+ [fO UG A (520), (29)
then solutions W, ({) and W,({) of (2-4) exist such that, if { lies in D’,
g ~es 30, g et 3 (- B, (210

as n—>00, uniformly with respect to ¢.

+ Here and elsewhere the terms ‘theorem A’ and ‘theorem B’ refer to the theorems of the preceding

paper, §5.
1 The notation 4, of theorem A has been changed here to U, for later convenience.

Vor. 247. A. 41
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332 F. W. J. OLVER ON
Weshall now express I, (nz) in terms of W} ({) and W,({). From the second of (2-3) it follows
that 1,(n2) = A (1+22) W () 1, (1422) H I4(0), (21)

where A, #, are independent of z. Because of the uniform property of the expansions (2:10),
we may keep 7 fixed and let z— 0 through positive values, or, equivalently, {——oo0. It is
then immediately obvious that g, = 0 for all sufficiently large n. Next, substituting (2-10)
in (2-11), we see that, for large 7,

A, ~ e (14224 (n2) +{ s %@}

s=0
Now as z—+00, nbeing fixed, we have from (2:6) and the well-known asymptotic expansion
of I,(z) for large z, {=z+0(z7Y), I(nz) ~ (2mnz) -t e,
and so e (1422 I (nz) — (2mn)~}

as z—>-+o00. Hence if we now fix the arbitrary constants in (2-9) by making U, ,(+00; = 0
(s>=0), so that this relation becomes

UnlQ) = =400 4 [ S U0y at, (2:12)

then A, can be replaced by (27z)~* in equation (2-11) provided that the sign of equality is
replaced by asymptotic equality. Thus we derive the desired result
e s Ui(©)
1,(nz) ~ Jem) (1 +22)*s§0 " (2-13)
as n—>00, uniformly with respect to z in the half-plane | arg z | <} —e¢, where ¢ is an arbitrary
positive number in the range 0 <<e<<im.
The corresponding expansion for K,(nz) may be derived in a similar manner, using the
relation

1
Kn(nz)fv(é%—é) e, as z-—>-oo.

The result is given by

K,2) ~ [(o) S 3, (—) ), (214)

=0 n

as n—>00, uniformly with respect to z in | arg z | < §7m—e.

The linking of I,(nz) and K, (nz) with W,({) and W,({) may alternatively be effected by
using the known behaviour of the functions at z = 0 in place of z = +c0. This procedure
leads to the result U(—w0) =7, (2:15)

where ¥, 71, 72 --- are the coefficients in the asymptotic expansion

J(Qﬂ) nni Y1, 72 )
T VT Tt (2-16)
The first seven are given by
L1139
YVo=L V1= 12° ’},2_~2883 7/3_51840’
(2-17)
571 1 63879 52 46819

7= T o488320° 75T 2090 18880° 6T 7 52467 96800°
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BESSEL FUNCTIONS OF LARGE ORDER : 333

The coefficients U,({) can be evaluated explicitly in terms of z. In order to arrive at
a convenient practical form we introduce the auxiliary variable

u=(1+2%)"%
Then, using (2-3) and (2-7), we obtain
G-, 0 = he—) (1), (218)
and the recurrence relation (2-12) becomes
dU, u
[&dzéﬂ@~ﬂaai+%f(1~&@Lbh. (2-19)
0
From this result it is seen that U, is a polynomial in . For s = 0,1, 2, 3, we have
U=1, U, = ju—o5, U, =1isu "192“4*‘1152“6‘[ (2-20)
U, = rhben® — $14805-+ K07 ~ B8

When z = 1 we see from (2-15) that U, = y,, and this affords a useful check on the coeffi-
cients in (2-20).

The asymptotic expansions of the derivatives of the modified Bessel functions may be
obtained by differentiating the expansions (2-13) and (2-14) with respect to z, the legitimacy
of this process being a consequence of theorem A. Using (2-18) the expansions are found
to be

a+z> et =7, , MJ()U+ﬁ)_% Ji
L(nz) ~ J(2mn) s§0 ns’ K (nz) 2n z go( )y ns’ (2:21)
where the coefficients V, are polynomials in «, given by
V.= U—u(1—u? (1U 1+udgu ) (2-22)
The first four are
Vo=1, V= —3u+5qu, Vz 128”2+ Posut — 15U’ [ (2-23)
Vs = —yoned + 835505 — §843¢” + 33924 J
They take the same values as the corresponding US at # = 1. Another check is given by
Up o= Uy 1 N4+ Upg g Vo— o -Gy Vy, = 0 (s=1), (2-24)
which is derived from the Wronskian relation for I,(nz) and K, (nz).
3. THE EXPANSION OF [,(vz) AND K, (vZ) FOR LARGE COMPLEX ORDERS
Let v = nel?, where 9 is real and fixed and # is large and positive, The functions
(1+22)L(vz) and (1422 K, (vz)
satisfy the differential equation
dazw . _
= O W (31)
(cf. (2-4)), where { is given by (2-6). With the substitution ¢ = {e'?, this becomes
%gzmum%y@f%nu (3-2)

41-2
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334 F. W. J. OLVER ON

If z lies in the half-plane |argz | <4m, then £ lies in a domain E which is the domain D of
§ 2 rotated through an angle 4. Let E’ be the domain in the é-plane corresponding to D’ in
the {-plane. By applying theorem A to (3-2), we find that solutions W], W, exist such that

W'l,vengg_”_s(é)’ %Ne—ngi (__)s?_tgig_)_ (33)

n n 4

as n—>c0, uniformly with respect to £ in E’. The coeflicients u (§) are given by u,(£) = 1 and

an®) =B ~1 [ et u o) e

The function (1+22)*1 (vz) may be expressed in terms of these solutions in a manner
similar to that of § 2, using the relations

(3vz)¥ . e?

I(vz) ~ Tr+1) as z—0, 1,(vz) ~ @mz) as z—>-+o0. (3-4)
The first of these is valid for all » other than a negative integer, and the second holds when
1
|argy|<$m. We find Ls) . § u,(£) (3
v J(2m) (142945 n

as n—>o0, provided |9 | <3
If the original variables { and v are restored in place of z and ¢, it is seen that
u,(£) = e U({),
where U,({) is defined by (2-12), and (3-5) becomes
et 20U

)

~Jem) (11 v

In other words, (2:13) remains valid if n is replaced by the complex variable v, provided that
|argv | <im. We may, in a similar manner, prove that the same is true of (2-14).

When argv lies outside the range |argy|< 47, the corresponding expansions may be
deduced from (3-6) and the analogous expansion for K, (vz), by means of (2-2) and the

formulae I_(z) = L(z)+2r sinvnK, (z), K_,(2) = K,(2). (3-7)

In general they are mixtures of both positive and negative exponential-type solutions.

1,(vz) (3-6)

4. THE EXPANsION OF J,(nz), Y, (nz) AND THE HANKEL
FUNCTIONS FOR LARGE POSITIVE ORDERS

The functions z}J,(nz) and zY,(nz) satisfy

d2w 1—2z2 1
= (55 e (1)

This equation has transition points at z = 0, 4+ 1. Taking z, =1 and following the pro-
cedure described in the preceding paper (§2, case B), we introduce new variables W, {

given by é(g—i)z 1 ;222’ W — (%g)_%w. (4-2)
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BESSEL FUNCTIONS OF LARGE ORDER 335
Then W satisfies the equation
%{21’ = GO} (43
B dz
where SO = 2+z d§2( b, z—d§ (4-4)
From the first of (4-2) we obtain
+ l@;—z) dz. (4-5)

We adopt the lower sign here to make { real when z is real, and carrying out the integration
we find that 9
20 =ln1—+L(zl—z>—~/(1——z2), (4-6)
In order to see how the z-plane is mapped on the {-plane it is helpful to introduce auxiliary
variables ¢ and p, related to z and { by the equations

z =secho, 2(* = p = ¢—tanho. ‘ (47)

The sector 0 <argz<m is mapped conformally on the half-strip —7<f¢ <0, Z0>0, and
on a domain in the p-plane comprising the half-plane £p < 0 and the half-strip —7 < #p <0,
#p=0. This in turn is mapped conformally in the {-plane on a domain bounded by the
real axis, the ray arg {{e!™ — (377)*} = 0 and the curve whose parametric equation is given

by — (3) (1—in)t  (0<t<o0). (4:8)

Corresponding points of the transformation of the sector | arg z | < are indicated in figures
3,4, 5and 6. For clarity only the parts of the ¢ and p domains corresponding to 0<argz<m
have been shown in figures 4 and 5. In figure 6 the points E, E’ have affixes (37)% e¥#i and
the curve ED has the equation (4-8), E’D’ being its conjugate.

For the purpose of applying theorem Bt to (4-3) it is not sufficient to confine attention
to the interior of the {-domain which corresponds to |argz|<m, because the distance
between the boundary curves ED and E'D’ shrinks to zero as the curves approach infinity.
It is necessary to investigate how the remainder of the {-plane is mapped on the z-plane.
The first point to be noticed in this connexion is that the line BE of the {-plane is mapped
on curves in the ¢- and z-planes whose parametric equations are readily verified to be

o =t—%miticos™1{(1—¢"!tanh¢)tcoshi}, (4-9)
=+ (¢cotht—#2)i+i(2—¢tanh ¢)}, (4-10)
where t=%0¢ and describes the range 0<¢<{,, where £, = 1-19968... is the positive root
of ¢ = coth#. These curves are indicated by the broken lines in figures 3 and 4; the points
P, P’ where they cut the imaginary z-axis (figure 3) have affixes
+i(8—1)f = +10-66274...

and correspond to the points ($7)%e¥i7! in the {-plane.
Next, we observe from (4:7) that the effect of increasing ¢ by —in is to increase p by
—im and to change the sign of z.

T See first footnote on p. 331.
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336 F. W. J. OLVER ON

From these results we deduce that the sector |arg{|<%m is mapped on the eye-shaped
domain K in the z-plane bounded by the curve BPE, whose equation is (4-10), and its
conjugate BP'E’. The transformation is not of course one-to-one and is more properly
represented by 200 =In{1+,/(1—2%)}—Lnz—/(1—22) (4-11)
(cf. (4:6)), where Lnz denotes the many-valued function whose imaginary part equals
iargz. If z lies in K and mm<argz< (m+1)m, where m is any integer, then { lies in the
curved half-strip bounded by the curves '

¢ = (3)} (t—mmi)}, (=@ (t—m+1ai)t (£20),
and the ray arg{ = —3n if m>0, or arg { = inif m<o0.

B___- C
o 71/3
—imADGip
Fi
-7 E D
Ficure 3. z-plane. Ficure 4. o-plane.
A
B c
o
G Pé-i71/2
A
Y177 D
F
Ficure 5. p-plane. Ficure 6. {-plane.

If z is regarded as a function of { it is now clear that z({) is regular over the whole {-plane
provided cuts are made along the rays arg { = 44 from { = (3m)* e*"! to infinity. We shall
denote the open domain formed by the {-plane cut in this way by the symbolT D.

We return to the function f{{). Substituting the first of (4-2) in (4-4) and carrying out

some reduction, we find that 5 (22(22+4)
O=Teeta @13 (4:12)

The only point of D at which z? = 1 is { = 0. Near this point, however, we find from (4-4)
and the first of (4-2)

20) = 1 -2 /2l E0(), SO =0, (#13)

and so f({) is a regular function of { throughout D.
+ No confusion with the D of §§ 2 and 3 will arise.
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BESSEL FUNCTIONS OF LARGE ORDER 337
If | {| o0 in the sector |arg (—{)|<%m, then |z|—+c0 and from (4-6) and (4-12) we
obtain 1
z =303+ 0(| L), SO ~—1p (4-14)
On the other hand, if |{|—+c0 in |arg{| <4 then |z|—0, and from (4-11) and (4-12)
we obtain 5
z~2exp(—4t—1), f(§)~16—§2 (4-15)

Thus the preliminary conditions for the applicability of theorem B to equation (4-3)
are satisfied. Following the notation of that theorem we define D’ to be the remainder of
the {-plane after the removal of the half-strips

| #(Le*m) [ <4, #({estm) > (§m)t —o
enclosing the cuts of D, & being a small arbitrary positive number. Taking a,, a,, a; to be
the points at infinity on the rays arg { = 0, —2m, £7 respectively, we find that the domains
D,, D,, D, all coincide with D’.
Applying theorem B we see that solutions W;({) (j = 1,2,3) of (4:3) exist such that as

o W0 ~Brg) 3 Sl B0 § B (+16)

s
s=0 n2s 5=0 n2s

uniformly with respect to { in D’. The coefficients are defined by the equations 4,({) = 1,

and 4
o SRR VORRORVHOIER

4,00 =—1BO) +} [/ BO AL
We now express J,(nz) in terms of W}, W, and W;. From (4-2) it follows that
i
Ji2) = (25) wio), (£18)

where W denotes a linear combination of W, W, and W,. Letting {400, z—0, we see
immediately that if z is sufficiently large, W is a multiple of W.
Next, if we take j = 1 and { = n~%a), in (4-16), where q,, is the mth negative real zero 0 of

Ai’ (z), we obtain (n3d,)
I(0) ~ A (a) 14 3 D), (419)

when 7 is large, uniformly with respect to m. For large m we have (see Appendix, equations
(A19) and (A 20))

(4-17)

@y = — {1+ 0(m=2)}, Al (e,) = (=) a1+ 0(m2)}, (4-20)
where y=3%n(4m—3). Substituting in the first of (4-14) we obtain
z(n~tay,) = fun~' +jm+ O(m™1), (4-21)

and substituting this value for z in the well-known asymptotic formula (Watson 1944, p. 199)
J,(nz) = (2/nmz)}{cos (nz—nm—}m) + O(z71)},
we have
Jy(n2) = (3Jum)! {cos (3p—1m)+ O(mN)} = (=)= (3[um) {1+ Om~1)}.  (4-22)
Combining the relations (4-18) to (4-22) and letting m 00, we see that

o) +{(125) W) ~ L+ {1 3 ALZe))

§=
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for large n. Hence if we now prescribe
4;1(—00) =0 (s20), (4-23)
. 40 V(AL () S A,(0) | AL (W) S B(C
we derive Jn(”z>~(1_zz){ - sgo n25)+ n(% )go nZS)}’ (4-24)

as n->00.

The result (4-24) is the desired expansion. The coeflicients occurring in it are given by
(4-17) with the arbitrary constants of integration fixed by (4-23). The expansion is uniform
with respect to { in D’, and hence it is uniform with respect to z in the sector | arg z | <7 —9,
and if z lies in K it holds for any value of arg z. When z lies outside these regions corresponding
expansions may be deduced with the aid of the continuation formula

Jnzenm) — emri J (nz),
m being any integer.

The significance of the eye-shaped domain K in relation to J,(nz) is now apparent. As
n->00,|J,(nz) | becomes exponentially small or exponentially large according as z lies insidet
or outside K, unless z happens to lie on the real axis outside K in which event J,(nz) oscillates
boundedly.

The corresponding results for the Hankel functions " (nz) and H? (nz) may be derived
in a similar way. If {00 e~ then z—>0o0 e¥"!, and HP(nz) becomes exponentially small.
Accordingly, H{"(nz) must be a multiple of W,({) for all sufficiently large n. Similarly,
H®(nz) is a multiple of W;({). The precise results may be verified to be

—4mi 1 47 t
Hpnz) ~ 25 () me,  HRe) ~ 2 () o, @)
where the coefficients 4,({) and B, ({) implied in the expansions for W,({) and W;({) are the
same as in (4-24). In deriving these results use may be made of the fact that {*B ({) =0 as
| {| =00 in the sector |arg (—{) | <§m, which may itself be proved from (4-24) by setting
{ = n~%a,,, where a,, is the mth negative zero of Ai (z), and letting m—>o0.
Combining the two results (4-25), we obtain

L) BL § A B 5 BLO) (426)

Y, (nz ~—(
n( ) 1—22 nt <o n2s nt <o n2s

this expansion having the same region of validity as (4-24) and (4-25).

5. THE ExPANSION OF J,(vz), ¥, (vz) AND THE HANKEL
FUNCTIONS FOR LARGE COMPLEX ORDERS
As in § 3 let us write v = ne'?. Then (1—2%)*{*J (vz) satisfies the equation
dzw . .
T = et flEe i} W (51
(cf. (4:3)), where {={e!? and {, f({) are defined by (4-11) and (4-12). The z-region com-
prising the sector | arg z | <m and the domain K of § 4 with any value of arg z, is mapped on
the g-plane cut along the rays
argf = +m+39, |€]=(m)*
+ It may be shown (Watson 1944, pp. 268-270) that if z lies inside K and » is any positive integer, then
[ Ju(nz) | < 1.
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BESSEL FUNCTIONS OF LARGE ORDER 339

These cuts are indicated by the heavy lines in figure 7, the points E, E’ having affixes
(3m)texp (Fiin+45id).
From theorem B it follows that solutions W, (j = 1,2, 3) of (5-1) exist such that
© ! (8 ©
I/V;- ~P](7’l§§) as(g) +PJ (n¥¢) S by(£) (5-2)

<o n2s nt <o n2s

as n—>00. The regions of validity of these expansions do not, however, extend over the
whole of the £-plane cut in the manner described. If, for example, 0 <& <{7 and the point
a, of theorem B is taken to be at infinity on the positive real axis, then the definition of D,
shows that the expansion (5-2) with j = 1 does not necessarily hold in the domain bounded
by the branch of the level curve of exp (—%£*) through E and the cut through E. This
excluded domain has been shaded in figure 7.

29/3
7/3

Ficure 7. §&-plane.

F/ 0!
1y D
G/
D
R B /3 |
/3
E
A
0
Ficure 8. £-plane. Ficure 9. z-plane.

We are not, however, bound to make the cuts from E, E’ along the rays indicated, and
larger regions of validity result if we make them instead along the outward branches of the
level curves of exp (—2&) which pass through £, E’. From (4-7) it is seen that these curves
are mapped in the p-plane as straight lines parallel to argp = + 47 —4¥, and using this fact
it is fairly easy to determine from (4-7) how they are mapped on the o- and z-planes.

Figures 8 and 9 show corresponding points of the §, z transformation with a value of §
between 0 and 7. They should be compared with figures 3 and 6. In figure 8 the curves

VoL. 247. A. 42


http://rsta.royalsocietypublishing.org/

j A Y

Y |

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

340 F. W. J. OLVER ON

EQ, E'Q" are parts of level curves of exp (—££%), and ED, E'D’ are the curves of figure 6
rotated round the origin through an angle £9. The unshaded part of the £-plane is mapped
on the z-plane cut along the join of z = 0 and z = —1 and the curve E£Q whose parametric
equation is defined by

z = secho, c—tanho = —ir+tel®= (0t <00),
and o+4im~ (3t)t el a5 0.
This curve leaves z = —1 at an angle 7—%9 with the real axis and has the line

arg (z+4m) = 1—79

as asymptote. In the cut z-plane, arg z takes its principal value everywhere except between
E’'Q’ and the negative real axis to the left of z=—1. In the theory of zeros (see §7) the
negative real £-axis is of interest; it is mapped on the z-plane as the image (BR) in z = 0 of
the curve £Q.

As in § 4 it is necessary to consider the mapping of the shaded zones of figure 7 on the
z-plane. Without going into detail it may be stated that the upper zone is mapped on the
interior of the continuous curve given by

z = sech o, oc—tanho = ir4-¢ei=9  (0<t<o0),
and o ~im+(3f)telém¥) as t—0.
This curve starts from z = —1 at an angle 17 —29 with the real axis and winds itself round

z =0 in the clockwise sense, tending to the origin as ¢—co. The transformation is not
one-to-one and arg z takes all possible values less than —.
In the lower shaded zone the points

£ = Bma)ielimn  (m=1,2,3,...),

are branch points of the function z(§). If cuts are made along the outward branches of the
level curves of exp (—2¢*%) through each of these points, then the whole zone is mapped on
the interior z-region bounded by the curves £Q, BR, BS and E’T of figure 9, arg z taking all
possible values greater than 7. The equation of BS is given by

z =secha, r—tanho = te 1079 (0<<t<o0),
and o~ (3t)te i@ a5 >0,

and E’' T is its image in z = 0. BS leaves z = 1 at an angle 7 —%4 with the real axis and has
the line arg (z—}7) = m—¥ as asymptote.

It has been assumed above that 0 <# < }7. If —im <9 <0, the roles of the upper and lower
zones are interchanged. ,

Now that the correspondence between the z- and £-planes has been established we are
in a position to express the Bessel functions in terms of the solutions I of (5-1). This is done
in a manner similar to that of § 4 for positive orders, and restoring afterwards the variables
v, { in place of n, & we find that if the z-plane is cut in the manner indicated in figure 9, arg z having
its principal value on the positive real axis, then the expansions (4-24), (4-25) and (4-26)°hold with
n replaced by v, provided | argv | <3}m.
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BESSEL FUNCTIONS OF LARGE ORDER 341

The region of validity of the expansions also extends to the z-region corresponding to
the shaded &-zones of figure 8 which we have just examined. Asymptotic expansions valid
for other ranges of argz and argv may be deduced with the aid of standard continuation
formulae, given, for example, by Watson (1944, pp. 74-75).

6. FORMULAE FOR THE COEFFICIENTS AND EXPANSIONS FOR THE DERIVATIVES

The coefficients 4,({) and B,({) in the expansions for J,(vz), Y (vz) and the Hankel
functions are defined by (4-17) and (4-23), f({) being given by (4-12). They are regular
functions in the cut {-plane whether the cuts are made as in §4 or as in § 5.

The first of (4:17) with s = 0 may be integrated directly, using (4-12) and the first of

(4-2), to give
where v=(1—22)"% (6-2)

It is not practicable to continue this process, but explicit expressions for the higher coeffi-
cients may be obtained by the following procedure which is suggested in a remark of
Cherry (1950, p. 250, footnote).

If { is taken temporarily to be positive and fixed then n!{—+oc0 as n—>00, and Ai (n#(),
Ai’ (n¥{) may be replaced in (4-24) by their asymptotic expansions (see Appendix, equations
(A1), (A2), (A3) and (A6))

AL~ TR $ Rh Av i) ~— 2 oxp () § CLEe, (o)
in which q¢; =1, b, = 1, and
_ (25+1) (25+43) ... (6s—1) _ 6s+1
b= st (144)° ’ b= 1% (6:4)

The result so obtained must be equivalent to Debye’s expansion (Watson 1944, p. 243),
which can be written in the form

J (nz) ~ _exp (—nl?) g T, ‘ (6:5)

(cf. (2-13)), where U, is given by the same formulae (2:19) and (2:20) as U, but with «
replaced by v, defined in (6-2). In consequence we derive the asymptotic equality

2‘[,{“ g( )asiAn(ﬁ) Z( )b 5 €B,(0)

< nsé&s 2s <o nsgés <o n2$+l ‘

Equating coefficients of #n~!, we confirm the result (6:1), and with the aid of the relation

Ag500—ag, 1 b1+ Ay 9by— ... Fagby =0 (s>0),

which may be derived from the Wronskian relation for Ai and Bi, we may show by induction

that 2 -
As(c) = mz: g &m 23 ms C}Bs(g) = z a C‘ Zs m+1° (6.6)

Thus 4,(¢) and (!B ({) are polynomials in {~? and v. The validity of these results for all
values of { in the cut plane follows by the principle of analytic continuation.
42-2
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Debye’s formula may be regarded as a particular case of the present expansions. The
same is true also of Meissel’s expansions for Bessel functions of nearly equal argument and
order (Watson 1944, pp. 245—248) and of the expansions given by the present writer (1952)
forJ,(z), Y,(z) and the Hankel functions when z = v}, 7 being fixed and | v | large. They
may all be obtained from the expansions of§§ 4 and 5 by substituting appropriate expansions
for the Airy functions.

The systematic tabulation of the coeflicients 4,({) and B,({) is most easily performed
directly from the defining formulae (4-17), using processes of numerical differentiation and
integration. For this purpose it is convenient to have the values of 4,, 4,, ... at { = 0, and
they may be obtained by substituting z = 1 in (4-24) and comparing with Meissel’s formula
for J,(n) (Watson 1944, pp. 232-233). The first three values are found to be

Ay(0) = —5ks = —0-00444 44444 ..., A,(0) = +0-00069 3735 ...,
A4(0) = —0-0003538 ....

Tables of 4,({) and B,({) have been prepared for s = 0, 1, 2, 3 for the case of real positive
arguments and orders. It transpires that these early coefficients decrease in magnitude with
increasing s; in the range —oo <{<0o the maximum values of | 45| and | B; | are 0:00040
and 0-0010 approximately. Thus the series (4-24), (4:25) and (4:26) are particularly well
suited to numerical applications.

Expansions for the derivatives

The expansion (4-24) may be differentiated term by term; if we write

4 2dz
80=("%5) = (-2%) (67
(cf. (4-2)), and replace z by v, we obtain
G2 tve) ~ G 8L 02) oo (A 5 ALLELRE ATCD 5 LallE B0,
Hence we derive the desired result
Jy(v2) ~ =) {Al b 3 Gl ALLD $ B0 (6)
where O =2/z4(0)} (6:9)
Cs(€) = x(8) As(§)+A§(€)+§Bs(C), Dy() = A,(0) +x(8) By-1 () +Bi_1(0), (6:10)
_PQ_ 1 2 L 4=2)° .
and 0="% 4—§—§{<1_Z2) . (6-11)

The functions ¢({), ¥({), x(), C;({) and D ({) are regular in the same regions as z({),
and (6-8) is valid under the same conditions as the expansion for J,(vz). The corresponding

expansions for ¥, (vz) and the Hankel function derivatives are obtained by replacing Ai by

the appropriate Airy functions.
Explicit formulae for C;({) and D,({) may be derived in a manner similar to that outlined
above for 4,({) and B,({); ( 6-8) is compared with Debye’s expansion for J,(nz). We find that

O =3 00 oy DO = 3 0l oy (612

where the functions V, are given by (2:22) and (2-23) with u replaced by, as defined by (6-2).
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7. ZERros oF J,(z) AND J,(2)

Zeros of J,(2)

We consider first the case when the order is real and positive. From (4-24) it follows that
for large n the values of { corresponding to zeros of J,(nz) satisfy the equation (see also
Olver 1954, equation (5-12))

Ai (1) + (14| ¢ [V exp (—$nl) O(n~1) = 0. (7:1)

It is shown in the Appendix that the zeros of Ai (z) are all real and negative. If, in the usual
notation, the sth zero is denoted by «,, we deduce that the corresponding value of {is given

by { = a+te, (7-2)

where a=n"ta, e=0(n"), (7-3)
and so j, ., the sth positive zero of J,(z), is given by

Jns = nz(a+€) = nz(a) +0(n7¥). (7-4)

An asymptotic expansion for Jn, s may be found as follows. From (4-24) and (7-2) we derive

by expansion ,
Wi () + W 1(a) + W”(oc) +.. (7-5)
where W, ({) is defined in §4. Now from (4-16) with j = 1 we obtain, if m is any integer,

W (0) i A (180) 3 @+n2m ai g 3 20,

(7-6)
m+1 o D2m+1
WEm+D(£) ~ n2m Ai (r30) z (€)+n2m+§A1 (B) S B (§)
r=0
d o _ d
where A%m —_ A2ml 1+§Bgm l’ A2m+l — __Agm_‘_CBgm’
d¢or r d¢
d d (7-7)
2m . A2m—~1__ ___ R2m—1 2m+1 . 42m 2m
Bm = A2 -l—ngr , B+l — A2 —I—ng,_l.
Hence
o 2m 2m-+1
W™ (4) ~ n2mt A’ (a Brnz(r“) . Wemt(q) ~ 23 AR (a,) z 5 (“) ,
r=0 r=0
and substituting these values in (7-5), we obtain the asymptotic equality
2 B,(a)  en* & Bl(a) €% 2 Bﬁ(a) e3n4 d B3( ) )
2 TILE ar Tar B e Tar ~0. (7:8)
From (7-7) we see that B} = 1, and so an expansion of ¢ exists of the form
+ -I- 34+ (7-9)
and substituting this relation in the first of (7-4) and expanding we obtain the desired result
(@
s Zﬁng,), (7-10)

=0
1 No question of the legitimacy of the repeated differentiation of the asymptotic series need arise; the

results are otherwise obtainable from the differential equation (4-3) satisfied by W,(g), and the recurrence
relations (4-17) satisfied by 4,(§), B,({)
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where « is given by (7-3) and the coeflicients p,(a) by the relation

rgo%(z—o:z~z(a)+(%+%+...) "(a )+2,(

n2+“2+ )2 "(@)+ ... (7-11)

The first three coeflicients are readily found to be
pPo=2, p=u,Z,  py=0a2'+%a22", (7-12)
where from (7-8) and (7-9),
ay = —By, ay = — (By+a; Bi + 4o By -+ 501 B). (7-13)

If « is replaced by the general variable {, it is evident that for all values of 7, p,({) is a
polynomial in the functions B({) and thederivatives z#({), and so isregular in the cut {-plane
D of §4. The expansion (7:10) is uniformly valid with respect to s, and the error on cur-
tailing it at the term p,(a)/n?~1is O(n~?~1). Thus the error term in (7-4) is really O(n™1).

The value of J;(z) at the zeros of J,(z) is another quantity of interest, and its asymptotic
expansion may be conveniently obtained with the aid of the formula (Olver 1950, equa-

tion (3-4)) dj
£ 30 = (b3neZe) (714)
in which s is regarded as a continuous variable. Using (7-3) and (7-10) we obtain

Ds Z 2 p(e)

ds “ 0¥’

The result analogous to (7-14) for the Airy functions is given by (Olver 1950, equation (2-15))
o N da)7?
:}:AI (as) - (—H;)
Also, remembering that p,=z, we have from (6-7) and (6-9)

bobo = —32°¢* = —2/y*.

Combining these three results, and using (7-10) and (7-14), we derive

Tiln )~ =AY (a) B (14 3 248, (715

r=1

where the coeflicients P,(«) may be obtained from the relation

° P)- = 4 »
(4550~ (3535 (7:16)

We find, for example, that
Pl = %W(l’oﬁi ‘H’l/’(’)): Pz = ’3‘P12+%¢2(ﬁ017§ +/’1Pi ‘I"Pzﬁ('))- (7'17)

For numerical purposes the coefficients p,({), ¢({) and P,({) of (7-10) and (7-15) may be
pretabulated, and this has been done by the writer for the first few values of 7. In the relevant
range 0< —{<co the early coefficients decrease in magnitude; the values of | p, |, | po |, | £3 |
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do not exceed 0-015, 0-0012, 0-:00045, and | P, |, | P, |, | P;| do not exceed 0-0070, 0-00036,
0-00006 4, respectively. Using the first four terms it is found, for example, that the series
will give j, ; and J,(J, ,) correct to at least ten significant figures when n>4; the first term
alone in each series gives four-figure accuracy at n = 4.

Zeros of J,(z2)
When 7 is large the values of { corresponding to zeros of J, (nz) are given by (cf. (6:8) and
Olver 1954, equation (5-13))

AL () 4 (1+ [ n*C *) exp (—§nl?) O(n7?) = 0.
The zeros a, of Ai’ (z) are all real and negative (see Appendix), and the corresponding values
of { are given by ¢ = f+1,
where f=n"ta;, n = 0(n). (7-18)
Thus j, ,, the sth zero of J,(z), is asymptotically given by
Jns = 1z(f+n) = nz(B)+O0(n).

Proceeding in a manner similar to that given above for j, ;, we define

C2m d CZm-l _I_CDZm— 02m+1 —_ _c_i_CZZi_’tl +€D2m’

r dé d€ r r
q q (7-19)

2m — (2m—1__ __ J)2m—1 2m+1 — (2m 2m

D = G o DR, Dyt = €3 g DE".
We find that 77~’%—]—%—]—%+ R (7-20)
and Jns~n z qn(zlf) , (7-21)

r=0

where the coeflicients §, and g, are related by the formulae (7-8), (7-11) and (7-12) with the
symbols B, p, ¢ and «, replaced by C, ¢, 7 and g, respectively. There is a difference between
the two cases, however, because C} = {, and in place of (7-13) we have

fr =—1C, = —CHC B CL+ 3 C3+55 CF). (7-22)

In consequence, although ¢,({) (=z) is a regular function of { throughout D, the higher
coeflicients ¢,({) have poles at { = 0 of order 2r—1 if r>1. The error on curtailing the
expansion (7-21) at the term ¢,(f)/n? ! is not O(n~%~1) but O(n~¥-%), uniformly with
respect to s.

The expansion for J,(j, ,) corresponding to (7-15) may be derived in a similar way
from the relations (Olver 1950, equations (3-9) and (2-15))

i) = (B ) ™ i) —(4 98) (7-23)
The result is Jo(Jn.s) ~ Al (a )¢(ﬁ) {1+ Zl ngf)}, (7-24)
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where ¢ is defined by (6:7) and the coefficients @, are calculable from the asymptotic
R (55 ¥ A AR [ CT0S £ A
The first two are given by

where Q1 = Bq1 + 7140 2 = 3+ o+, 01+ D290 (7-26)

2 2
I T T N I
The functions @,({) have poles of order not exceedingt 2r at { = 0, and if the series inside
the braces of (7-24) is curtailed at the term @,(f)/n%, the error in the value for J,(j, ) is
uniformly O(n=¥"1).

The fact that the forms of the error terms of (7-21) and (7-24) are weaker than those of
(7-10) and (7-15) is somewhat surprising. It arises essentially from the process of reversion
used, which is not so effective applied to (6-8) as it is to (4-24). However, in numerical
applications the difference is only marked for very low values of 5. In these exceptional cases
the ‘lost’ accuracy may always be recovered by solving the equation J,(nz) = 0 by succes-
sive approximation, evaluating the trial values of J,(7z) by means of (6-8).

Zeros of functions of complex order

The extension of the results of this section to the half-plane |argv|<4m presents no
difficulty. The expansions (7:10), (7-15), (7-21) and (7-24) remain valid with » replaced
by the complex variable » and

a =via, f=vta
these quantities now being complex. From §5 it is seen that the points z(a) and z(f) lie on
the curve BR of figure 9, and so when |argv | <im and |v| is large the zeros of J,(vz) and
J,(vz) lie asymptotically close to this curve.

8. ZERos oF Y,(z) AND Y, (2)

The analysis of § 7 may be repeated with equation (4-26) in place of (4:24). If, in the
usual notation, y, ; and y, , denote the sth positive zeros of ¥,(z) and Y,(z) respectively,
then the expansions (7-10), (7-15), (7-21) and (7-24) evidently remain valid with the
symbols j and J replaced by y and Y respectively, provided that Ai and « are replaced by
—Bi and 4; the quantities «, f are now given by

a=n"%h, f=nt,
(cf. (7-3) and (7-18)), where b,, b; are the sth negative zeros of Bi (z), Bi’ (z) respectively.
An important difference emerges, however, between the cases of ¥, and J,,. Whereas the
zeros of J, are all real and positive, ¥, has in addition to its real zeros a number which are
complex. In this section we investigate the distribution of the complex zeros.
It is shown in the Appendix that the function Bi (z) has a string of zeros f,, f,, ..., lying
in the sector 7 < arg z < im, together with a conjugate set £}, f,, ..., in the conjugate sector.

1 It has been verified that the order is actually 2r—1 for » =1, 2, 3, and for these cases the truncation
error is O(n~¥-¥%),
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If they are arranged in ascending order of modulus magnitude then the asymptotic expan-
sion of f, for large s is given by (cf. Appendix equations (A19) and (A22))

e €8 (1552~ G HERHI ),
where A =32{(4s—1)m+2iln 2}.

Thus the large zeros in this sector lie asymptotically close to arg z = %, but even the small
zeros all lie very near to this ray; numerical calculation (see § 10) shows, for example, that
arg ffy = m-+0-095 ...

Corresponding to f; there is, for large n, a zero 7, ; of Y,(z) whose asymptotic expansion
is given by - © 4 (-}

) an—l

(cf. (7-10)), where the functions p,({) are those of §7. This expansion is not, however,
uniformly valid with respect to all s; if s>>n the point { = n~#f, lies asymptotically close to
the cut along the ray arg { = 1n from { = (3m) e¥"! to infinity. This cut is a boundary of the
region of validity of (4-26) and the expansion (8:1) is uniformly valid only when s<«n,
where « is any fixed number in the range 0 <« <1.

The approximate distribution of 7, ; may be found by curtailing (8-1) at its first term,

given by T = n2(n~36) + 0 (n1) (8:2)

(see (7-12)), where z({) is the function defined in §4. If s<n, the point { = n~#f, lies close
to the segment BP'E’ (figure 6) of the ray arg { = 1w ; this is mapped in the z-plane on the
curve BP'E’ (figure 3), the lower boundary of the domain K. In consequence, the zeros
7, ¢ lie close to, and in fact just outside, the lower boundary of the domaint nK.

The relations (8-1) and (8-2) naturally break down when the value of s approaches n,
that is, for zeros lying in the neighbourhood of the traunsition point z = —1. In order to
achieve a more complete account we must consider the expansions of ¥, (nz) corresponding
to (4-26) for general phase ranges of z. Before proceeding to this we record some properties
of a relevant Airy function.

The Airy function Di,, (z)

This is defined by the equation
Di,, (z2) = mi Ai (z) —Bi (2), (8-3)

where m is a constant, which we restrict here to be real. Other Airy functions may be ex-
pressed in terms of Di,, (z). Using the equation (British Association Mathematical Tables

1946, p- B9) Ai (€7 2) = § e (Al (z) —iBi (2)},
we readily verify that

Di, (z) =—Bi(z), Di, (z) = 2efm Ai (e z), Di; (z) = 2e#iBi (el"iz). (8-4)
Relations connecting functions having different values of m are
Di_,(z) =Di, (@, Di,(e"2) = h(m—1)e " Digyaom (2).  (8)
1 The ‘domain nK’ means the domain K magnified by the factor n.

VoL. 247. A. 43
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The asymptotic expansions of Di,, (z) and Di,, (z) for large | z | may be obtained without
difficulty from those of Ai (z) and Bi (z) given by equations (A 1) to (A 10) in the Appendix.
Using the same notation we find that

Dim(—z)~/(m2;l)iz—*{cos(£ frts i mjl) (£)+sin(§ ety b -”?ii)g(g)} (m?>1),

Di! (—z) ~ A/(m27;_l)izi{cos(§~——1r+ In ”it—})ze(g)+sin(g—~n+ In @il)s(g)} (m2>1),

Dim(zew)N/(Q(m“lj)e&wiz“i{cos(§+g{-ﬂ+%lnm ) (§)+sm(§+41r+;lnm l)Q(g)} (m>

m

DI, (z 1) ~ /(Q(m—l)) e-—%niz*{cos(g——%ﬂ—l-%lnﬁ;)f@(g)—}—sin(g—-%ﬂ—l—%lnm;I)S(@} (m>

Di, (zeH) ~ J (2(1 “’”)) i z‘*{cos (g+gn+ilnll”f) P(E) +sin (g+gw+%1nl'—“2—”f) Q(g)} (m<
Di;, (zet!) ~ J(Q(i —m)) e~imizt {cos (§~~7r+ ln

1—m

7)S®] (n<

)R(g) tsin (5—%ﬂ+%ln

each of these expansions being valid in the sector | arg z | <Z#. Expansions for Di,, (ze~#"1)
and Dij, (ze #1) corresponding to (8:7) and (8+8) may be obtained by changing the signs
of i and m in the right-hand sides of these relations (see the first of (8-5)).

From these results it is seen that Di,, (z) and Di,, (z) have strings of zeros lying asymptotic-
ally close to the rays argz = 7, {7 and —in. We denote those of Di,, (z) by d,, s 0, and
€ns (5 =1,2,...), respectively, and those of Di, (z) by 4, , 0, and €, , (s=1, 2 s
respectively, and suppose each string to be arranged in ascending order of modulus.

The asymptotic expansions of these zeros when s is large may be found by reversion of
(8-6) to (8-8). Using the notation 7°(), U(x), V(1) and W(u) defined by equation (A 19)
of the Appendix, we find for the group of zeros near argz =7

dm,s ~ T(/l)) dr;t,s ~ U(ﬂ)’
Di,, (d,,;) ~ (=)' (m*=1)}iV(QA),  Di,(d,,) ~ (=)' (m*—=1)}ilW(p), (8:9)
where Az—g{(4s-l)7r 2iln i;} ﬂ=g{(45—3)ﬂ—2ilnmi—;} (m?>1).

For the zeros near arg z = 7, we find

Oy, ~ €470 T'(A), Oy, ~ €71 U (1), ‘
Diy, (8,,5) ~ (=) 2(m—=1)}F e V(A),  Di, (5,,) ~ (=) {@m—-1)}e" Wy (m>1),
Diy, (9,,5) ~ (=) {2(1—m)} e V(A),  Di, ( m,s) (=)rA-—mpem Wn (m<1),

3 . m—1 > (8’10
5 }, /t——§{(43~—1>7f—‘211n7} (m>1),

where Azg—{(cis—-:% )m— 2iIn”

3 m 3 o L—m
/1=~8—{(4s—— m—2iln 2} /t:—s—{(4s-3)7r—21ln——2~”z} (m<1).
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Finally, for the zeros near arg z = —im, we find
€ms ~ € T(A), €m,s~ € U(W),
Diy, (6,5) ~ (=) {2(1+m)} e V(A), Di,, (6,5) ~ (=) 20 +m)Pe ™ W(p)  (m>—1),
Diy, (6p,s) ~ (=) 2(—1—m)fem V(A),  Di,(e,,) ~ (=) {2(-1-—m}e ™ Wy (m<-1),
where A:g{(éh—— )m+2iln +m} =g{(4s-3)n+2iln1;m} (m>—1),
A=2{M&—$n+ﬂﬂn&:%:ﬂ”, ﬂ=g{my—un+2unQ:%;ﬁ4 (m<—1).

(8:11)
It can be verified by contour integration that Di,, (z) and Dij, (z) have no zeros other
than those enumerated above.

Zeros of Y,(z) and Y, (2) for general phase ranges of z, when n is an integer
If m is any integer we have (Watson 1944, p. 75),
Y, (zemm) = e-mnmi Y (z) +2isinmnm cotnnd,(z). (8-12)

Hence, if 7 is an integer,
Y. (zemm) = (=) {¥,(2) +2imJ,(z)}. (8-13)
Combining this result with (4-24) and (4:26), we see that

Fnzem) (- yon( 2L )} [Din () 3 A0 DEWH) 3 By

1—22 <o n2s nt <o n2s

for large n, where {, 4,({) and B({) are the same functions as in § 4, and Di,,(z) is defined by

(8:3). The expansion (8:14) is valid when |arg z | <<m, but we shall use it only in the half-
plane |argz|<%m.

Corresponding to a zero d of Di,,, (z), there is a zero z = 5 of Y, (ze™") given by (cf. (8:2))

n = nz(n%)+0(n1). (8:15)

Consider first the zeros corresponding to d,,, , (s =1,2,...). If s is large, and m + 0, we

B e G L= e

If s> n, so that n~%d,,, islarge, we deduce from this result, (8:15) and the first of (4-14) that

7= (s—1) n o O(fs) + O(n).
Letting s —o00, we see that the curve of zeros has the asymptote
Fz= 4L 0 ) (m+0). (8-16)

"This result may be otherwise obtained from (8-13) and Hankel’s expansions (Watson 1944,
p- 199) forJ,(z) and ¥,(z). In this way we find that if n is a positive integer or zero then the
asymptote is given by om+1
2m—1|
Thus the error term O(z~!) in (8-16) is in fact zero.

Jz=—1%In (8:17)

43-2
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Consider next the zeros corresponding to d,, , (s =1,2,...). The points { = n"%j,,
like the points { = n~#f in (8-1), all lie near to the ray arg{ = 47, and hence the corre-
sponding zeros of ¥, (nz e™") lie near to the lower boundary BP'E’ (figure 3) of the domain
K. These zeros may be regarded as lying on a continuous curve, and it is of interest to know
where this curve meets the imaginary z-axis, and how many zeros lie to the right of this
axis.

If m>=1, we have from (8-10),

neid, | — cimi (3)% {(s—3) m—3iln m— 3} {1+ O(s-2)}. (8-18)

2m, s 2n

The curve in the {-plane passing through the zeros is obtained by allowing s to be a con-
tinuous real variable. Now from §4, the points

{=e" (3m)t and z=7Z,=—i(ff—1)'=—1066274..., (8:19)
where #, is the positive root of coth¢ = ¢, are corresponding points. At z = Z;, we have,
from (4-2 :

(+2), (QE) — —z(—~€~) — e (37)t (1—£52)h,
dg z=%, 1—2z2

Setting s = $n+32 in (8:18), we find that the imaginary z-axis and the curve of zeros of
Y (nz emi) intersect at
i

2n(l~t52)51n|m~%|+O(72‘2). (8-20)

z = Zy+
The zeros lying to the right of the imaginary z-axis are seen from (8-18) to be those for which
s—32 < 1n; there are thus [$n-+ ] such zeros.

When m<0 the equation corresponding to (8:18) is obtained by replacing % by %;
the equation (8:20) remains valid, but the number of zeros to the right of the imaginary
axis is now [$n].

The analogous results concerning the zeros corresponding to ¢,, , may be deduced by
the use of the conjugate property (see the first of (8:5)),

em,s = a—m,s'

The curve of these zeros lies near the upper boundary of K and intersects the imaginary

axis at the point ;
z:zo—éﬁ(l~t0‘2)ﬂn]m—{—%]—l—O(n‘z). (8-21)

The number of zeros to the right of this axis is [4n] or [$n 4] according asm =0 or m< —1.

We are now in a position to assess the asymptotic distribution of zeros of ¥, (z e”") in the
wider range |argz|<7. In the quadrant }n<<argz<m the zeros are the same as those
of Y,(zem+b7i) rotated through an angle 7. There is an infinite string of zeros here if

m>=> —1, having the asymptote o9m--3
Jz=4In
2m-+1
(cf. (8:17)), and the curve of zeros near the upper boundary of nK continues from the
point given by (8-21) towards z = —n; the number of zeros on this segment is [$n+1] or

[4n] according as m =0 or m< —1. Combining this with the result for | arg z | <}, we see
that for all values of m the total number of zeros on the upper curve is 7.
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Similarly, there is an infinite string of zeros in the quadrant —n<argz< —3w if m<1,
and for any m the lower curve from z = n to z = —n also contains z zeros.

These results are illustrated in figures 10, 11 and 12. Figures 10 and 12 are conjugate
to each other. The continuous curves are the boundaries of nK; they intersect the imaginary
axis at the points nz, and nz,, where z, is given by (8-19). The broken lines indicate the

Ficure 10. m< —1. Ficure 11. m=0. Ficure 12. m>1.

Distribution of the zeros ---- of Y,(z) in (2m—1) 7 <arg z< (2m+ 1) 7, when z is an integer.

curves on which the zeros lie. The displacements of the asymptotes of the infinite branches
from the real axis are ¢ and «’, and the distances between the broken and continuous curves
where they cross the imaginary axis are 4 and 4’, where, when m + 0, a, @', b and 4’ are given
by

a=3n R b (1Y N (2 m |+ 4+ 0,
(8-22)
d=tma T =159 (2 m| )+ 0 ).

For m = 0 we have
a=1In3 = 054931 ..., b—134(1—42in2+0(n"!) =0-19146...+0(n"). (8-23)

There are n zeros on each of the finite curves.

The zeros of Y,(z) may be investigated in a similar manner, and the results are very
similar. Figures 10, 11 and 12 are also applicable to this function, and the number of zeros
on each of the finite curves is again #. The significant change is in the form of the error term
(cf. (7-22)); in the formulae corresponding to (8-2), (8-15), (8-22) and (8:23) the error
term is O(n~t) and not O(n™1).

The results obtained in this section are valid for large values of n. We can, however,
determine by contour integration the number of zeros of Y (ze™) and Y,(ze”) in the
strip 0< Zz<(s+ 4n)m when 7 is any positive integer or zero, and s is an integer. We find,
without difficulty, that if s is sufficiently large Y (ze™!) and Y,(ze™) each have n+s
zeros in this strip, unless m = 0 and 7 is odd, in which event Y,(z) has n+s—1 zeros and
Y,(z) has n+4s-+1 zeros. Thus when n is a positive integer Y,(z) and Y,(z) have no zeros other
than those indicated by the asymptotic formula (8-15).

Tables for the numerical evaluation of the first term in the various formulae for the
zeros and associated values are given in § 10.
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Zeros of Y (z) and Y, (z) when n is half an odd integer

If we substitute n = n,+¢ in (8-12), where 7, is an integer and 0<{¢<{1, we obtain
Y, (zemm) = (—)mmo{e~memi Y, (z) + 2isinmenm cotenm J,(2)}. (8-24)

The pattern of the zeros of Y,(z) for general phase ranges of z evidently depends on ¢, the
non-integral part of n. We have considered above the case of integer z; we now deal briefly
with the case when 7 is half an odd integer.

If we put ¢ = } in (8-24), we obtain

Yn(z emni) — (__)mno e—%mﬂiyn(z)'

The zeros of Y, (z e™™) are thus the same as those of ¥, (z). Because of this and the conjugate
property it is sufficient to examine the region —j7<argz<0. In this quadrant ¥,(z) has
a string of real zeros y,, , ¥, 5, --., and a number of complex zeros 7, 1, 7,5, ---, lying near
the lower boundary of nK and having the expansion (8:1). The curve on which they lie
meets the imaginary z-axis at the point

z=nZ,—$(1—14?)}*In2+0(n"1) (8-25)

(cf. (8-20)), where Z, is given by (8:19). The number of such zeros lying to the right of this
axis is [§7,]; if n, is odd there is, in addition, a zero on the imaginary axis.

Figure 13 shows the distribution of zeros over the whole plane. The continuous curves
are the boundaries of nK. The zeros lie on the real axis outside nK and on the broken curves.
The latter intersect the imaginary axis at the point 7nZ,—ib and its conjugate, where Z, and 4
are given by (8-19) and (8-23). The total number of zeros on each broken curve is ny=n—3.

no UZZ)
negative /7 n/ h\n n/ \n
————— i) \.__.ia, //r \\ //l'
~~trg, 477,
Ficure 13. Ficure 14. Ficure 15.
Zeros ---- of Y, (z), whenn  Zeros----of HY(z) in| argz|<m,  Zeros ---- of H(z), when n
is half an odd integer. when 7 is an integer. is half an odd integer.

The same diagram is applicable to the zeros of Y,(z), but the number of zeros on each
broken curve is now n,+1=n+3%, and the error term in the asymptotic formulae has to
be modified.

As in the case of integer n, it can be shown by contour integration that Y,(z) and Y,(z)
have no zeros other than those indicated by the asymptotic formulae.
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9. ZEROS OF THE HANKEL FUNCTIONS AND THEIR DERIVATIVES

Zeros of HV (2) and H{V' (z) when n is an integer
In this section we extend the analysis of § 8 to the Hankel functions. Only H{"(z) will be
considered, the zeros of H{?(z) are the conjugates of those of H{V(z).
If m is any integer we have (Watson 1944, p. 75),
H{(zemm) = e=mnmt H(z) —2 e~ sinmnm cosec nmJ ,(z). (9-1)
Hence if n is an integer |
HP(zem) = (=)™ {H(z) —2mJ,(2)} = (—)™i{T,(2) + (2m—1) ], (2)}.  (9-2)
Combining this result with (4-24) and (4-26), we obtain
HO(nzemmi) ~ (—)mn i(l i§zz)% {Dlzm;zi (n¥0) Sgo A,Zgo"g) +D12m;2§ (n¥0) sgo B;Zgg)}, (93)
(cf. (8-14)), valid when | arg z | <m, where Di, (z) is defined by (8-3). v
Whenm # 0 or 1, Di,,,_, (2) has a string of zeros d,,,_, , near the negative real axis (see § 8).
Corresponding to these there is a string of zeros of H{"(z e™!) lying on a curve whose asymp-
tote is given by

1 m. -1 .
Iz = 2lnm_leO(n ) (9-4)

(cf. (8-16)). With the aid of Hankel’s expansions for J,(z) and Y, (z), we can show that the
error term O(n~1) in this equation is in fact zero. When m = 0 or 1, Di,,,_; (z) is a multiple
of Ai (e**i z) (see (8-4) and (8-5)), and has no zeros d,,,_, ..

Next, if m + 1, Di,,,_, (z) has a set of zeros J,,,_, , near the ray arg z = 4n. Corresponding
to these there are zeros of H{"(ze™) lying near the lower boundary of nK; the curve on

which they lie intersects the imaginary z-axis at the point

z=nZy+ 31— n |m—1|+0(n?) (9-5)
(cf. (8-20)). The number of zeros to the right of this axis is [$7z+1] or [in] according as
mz 1. If m = 1 there are no d,,,_, , zeros.

Lastly, if m + 0, H{V(ze™) has a set of zeros lying near the upper boundary of nK corre-
sponding to the zeros ¢,,,_, , of Di,,, , (z). The curve of these zeros intersects the imaginary
z-axis at the point z = nzyp—¥H(1—52)Hn | m |+ 0(n ), (9-6)
and the number of zeros to the right of this axis is [4z] or [$z+ 4] according as m=2 0. If
m = 0 there are no ¢,,, , , zeros.

The asymptotic distribution of the zeros of H{"(z) in the range

(2m—1)m<argz<(2m—+1)w
may be deduced from these results in a manner similar to that used in§ 8 for ¥,(z). For the

cases m< —1 and m>1, the pattern of the zeros is given by figures 10 and 12 respectively,
with the quantities a, ', b and b’ now given by

1y 4m—1]+38 — 1(1 —2)} 1|41 -1

o=l b= 31— n (| 2m—} | +3)+0(n), o
, am—1|+1 , _ ~
a =%ln,’z—2~1,’_l~, b =319 n (| 2m—} |—$) +0(nY),

in place of (8-22). There are n zeros on each of the finite curves.
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Figure 14 corresponds to the case m = 0, for which there exist only one finite set and one
infinite string of zeros. The former are asymptotically situated on the lower boundary of
nK, and the asymptote of the latter is

Iz=—a—=—%In2=—034657 ....

There are n zeros on the finite curve.

Figures 10, 12 and 14 also hold for H{’’(z), and on each of the finite curves this function
has n zeros also.

It can be verified by contour integration that H(z) and H{"'(z) have no zeros other than
those indicated by the asymptotic formulae.

Zeros of HV(z) and HY'(2) when n is half an odd integer

If we replace m by 2m in (9-1) and substitute n = n,+ 4, where n, is an integer, we obtain
HO(ze2mmi) — (—)ym HD(z). ‘

The zeros of H{V(ze?"™) are thus the same as those of H(z).

The expansion of H{P(nz) in the range | arg z | <7 is given by (9-3) with m = 0. The only
zeros in the half-plane |arg z | < {n are those corresponding to §_; ;=e*"lq, and they lie
asymptotically close to the lower boundary of K. The number of these zeros is [$7,], but if
n, is odd there is also a zero on the imaginary axis.

If we substitute m = +1, n = ny+4 in (9-1), we obtain

HP (ze*m) = F (—)wi{HP(2) =2J,(2)} = & (— )" iH2(z) = £ (—)iHP(2),

and so the zeros of H{"(z) in the quadrants }n<argz<m and —n<argz< —Ln are the
images in the imaginary axis of the zeros in the half-plane | arg z | <i7.

Figure 15 illustrates the distribution of zeros over the z-plane. They lie asymptotically
close to the lower boundary of nK and their total number is n,=n— 1. The zeros of H{V'(z)
are similarly distributed but their total number is 7, +1=n+-4. Itis evident from the form
of the explicit formulae for AV and HV’ (see, for example, Watson 1944, p. 80, equation

(12)) that there are no zeros other than those indicated by the asymptotic formulae.

10. TABLES FOR THE CALCULATION OF ZEROS AND ASSOCIATED QUANTITIES

For convenient numerical application of the asymptotic series of §§7, 8 and 9 we need
tables of the coefficients p,({), ¢,({), P.({), Q,({), ¥({) and ¢({), and also of Airy function
zeros. For real zeros this initial preparation is not prohibitive. The Briutish Association Mathe-
matical Tables (1946) give the first fifty zeros of Ai(z) and Ai’ (z) and the first twenty real
zeros of Bi (z) and Bi’ (z) to eight decimal places. The writer has prepared comprehensive
tables of coeflicients which enable the corresponding Bessel function zeros and associated
quantities to be computed to ten significant figures when 75, and they will be published
elsewhere.

For the purpose of evaluating the complex zeros of Y,(z), ¥,(z), the Hankel functions
and their derivatives in all phase ranges when 7 is a positive integer, the coefficients p,((),
g,({), ..., need to be tabulated over a substantial part of the {-plane. Tables would also be
required of the zeros of the Airy functions Di,, (z) and Di,, (z), defined by (8-3), for all
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integer values of m. The preparation of comprehensive tables would be a large under-

taking. In this section we give a useful set of skeleton tables which can be used, even for

moderately large =, to calculate to three- or four-figure accuracy the smaller complex

zeros of Bessel functions and associated quantities in the more important phase ranges.

If the asymptotic formulae of § 8 are curtailed at their first term and the substitution

¥ = 2/z¢ (cf. (6-9)) is made, we obtain the following equations, n being a positive integer,

p=nztO(Y),  Tilgerm) = (—)memeioni(zg) " Diy, (7,) {1+ 0w}, (101)

7 =nz 0,  Y,(y emm) = (=)™ n7ig Diy,(7p,) {L+0(n71)}, (10-2)

where y,,,, 75, are zeros of Di,,, (z), Dij,, () respectively, and 7, ' the corresponding roots of
Yn(” emni) — 0, Yr,z(ﬂl emﬂi) = 0.

The argument { of the functions z and ¢ is n7%y,, in (10-1) and n~%y;, in (10-2). The
analogous formulae for the Hankel function zeros are (see §9)

p=nz+0@™"), H'(gemm) =i(—)mm12n74(z$)"! Dig,,_, (72m~1) {1+0(n"%)}, (10-3)

7 =nz+0(™), HP(p' em) =i(—)"n" Diy, s (Yop-1) {1+ 0(n7Y)}, (10-4)
where 7, 7’ are now roots of
Hél)(” emﬂi) — 0’ Hél)’(”’ emﬂi) — 0’

respectively, and the argument { of z and ¢ is n~%y,,,_, in (10-3) and n~%y5,,_, in (10-4). The
tables in this section give three-decimal values of y,,, 7,,, Di,, (7,,), Di,, (), 2() and $({).
The modulus and phase of the first five complex zeros §,, £, ..., f5 of Bi (z) = — Diy(z) and
B, Bas -, B of Bi’ (z) are given in table 1, together with the modulus and phase of Bi’ (4,)
and Bi (#;). These zeros lie in the upper half-plane; the corresponding zeros in the lower
half-plane are their conjugates. ‘
Tables 2a, 26 and 2¢ give zeros of the function

Di, (z) =2i Ai (z) —Bi (2).

The first five members of each set &, , d5 , €, ,, €5 , d, ; and d; , defined in § 8, are given,
together with the associated values of Di; or Di,.

Larger zeros of the sets given in tables 1 to 2¢ may readily be found by use of the asymp-
totic series (8-9) to (8:11). To four-figure accuracy the quantities 7°(A), U(x), V(1) and W(x)
reduce to a single term when s> 6.

With the aid of tables 1 to 2¢ and the British Association Mathematical Tables (1946) giving
the real zeros of Ai, Ai’, Bi and Bi’, we may trivially obtain the corresponding zeros and
associated values of Di,, and D1i,, for any of the valuesm = 0, -1, 4-2, +3, +5. From (8-4)
and (8:5) it is seen that the zeros of Di,, are e*#! times those of Ai, the zeros of Di_, are
e™#i times those of Bi, and the zeros of Di_, are e*#! times those of Dir,, the last relation
following from (8-5) with m = 2, 5. The same relations hold for the zeros of the derivatives.

We now consider tables of z({) and ¢({). In the application of (10-1), (10-2), (10-3) and
(10-4) it will be noticed that arg { = argy,, or argy,,. In consequence, for the values of m
contemplated in tables 1 to 2¢, arg{ is approximately 447 or #. Thus z({) and ¢({) are
needed only near the rays arg{ =47 and arg{=n; the values near arg({=—1%r are

obtainable from the former by means of the conjugate property z({) = z({).

VoL. 247. A. 44


http://rsta.royalsocietypublishing.org/

A A

A\

/ y

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

AL A

1~

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

356 F. W. J. OLVER ON

Table 3 gives the modulus and phase of the function z({) for
arg ({e~#1) = —0-15 (0-05) +0-10, ¢ =0(0-1),

where [ is just greater than the value for which argz = —i7. It is linearly interpolable in
both directions with a possible error of 2 units in the end figure for the higher values of | {|.
This table covers all the values of { near arg { = 17 which are required in the application
of (10-1) to (10-4) using the zeros of the functions Di,, (z), Di;, (2) (m = 0, +£1, +2, +3, +5),
with the exception of f], &, 1, 6,1, 025, 85, and 0”5 ;. These exceptions are covered by
table 3a which gives z({) for values of arg{ equal to the phases of these particular zeros.
This table is linearly interpolable in the | {| direction; the question of interpolation in the
arg { direction does not, of course, arise.

Tables 4 and 44 give the values of ¢({) corresponding to z({) in tables 3 and 3a. They are
linearly interpolable.

Tables 5, 54, 6 and 64 give, in a similar manner, values of z({) and ¢({) near arg { = 7.
They too are linearly interpolable.

Application of the tables: numerical example

When the order 7 is large and positive, integer or not, we can, with the aid of the tables,
calculate the zeros of Y, (z), Y, (z), H{V(z) and H{"'(z) in the sector | arg z | <4m. When 7 is
a positive integer we can also calculate the zeros in | arg z | < §7 of the functions Y, (ze™"),
Y,(zem) (m =0, +1), and HP(zem), HV' (ze™) (m = —2(1) 3). Interms of general
phase ranges this means we can, for integer , evaluate the zeros of Y, (z), ¥, (2) in | arg z | <3m,
and the zeros of H{(z), H'(z) in —§m<argz<%m; the corresponding range for H?(z),
H®?'(2) is —In<argz<$m.

As an example we evaluate a few complex zeros of Y;(z). If n = 3, then n% = 0-4807,
and using table 1 we obtain

|nt6, | =1-132, arg (n7#f)) = In+0-095.
Entering tables 3 and 4 with |{| = 1132, arg{ = im+0-095, we find by interpolation
z = 0-783 exp (—0-934i), ¢ = 1-362 exp (0-171i),
and so for the corresponding zero 7, , of Y3(z) we have approximately (see (10-1))
75,1 = nz = 2:349 exp (—0-934i), Y3(75,1) = 2n7%(z¢) "1 Bi’ (f,) = 0-895 exp (—2-879i),

the value of Bi’ (f;) being obtained from table 1.

There are two other zeros 73 , and 7, 5, say, near the lower boundary of nK (figure 11),
but the same procedure with £, or £, in place of #, fails because | { | lies outside the range of
table 3. This means that 7; , and 7, 4 lie in the quadrant —7<argz<—4m. Accordingly,
we enter tables 3a and 44 with the following values obtained from table 2a:

' [{] = |n7%,, | = 0-590, arg{ = arg?d, ,,
and we find that
z = 0-917 exp (—0-472i), ¢ = 1-291 exp (0-091i).
These correspond to a zero of Y¥;(3ze™); the related zero 75 5 of ¥3(z) is given by
75,3 = 3€7 z = 2-751 exp (2:670i),
Y3(ns,3) =—2n7%(z¢) 1 Dij (0,,,) = 0-696 exp (1-480i).
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This actually lies on the upper branch; the corresponding zero on the lower branch is of
course its conjugate. Similarly, using 8, , in place of 8, , we find

73,9 = 2:202 exp (1-7791), Y3(n3,5) = 0-986 exp (—0-958i).

The zeros on the infinite dotted curves of figure 11 may be found in a similar manner.
For the first zero on the upper branch, y{, say, we find that

| 8] = |ndy, | = 1143, - arg{=argd, , =n—0-150 (table 2¢),
z = 2-138 exp (—0-097i), ¢ = 1-062 exp (0-024i) (tables 5, 6),

A A

yP =38emz = 6-414.exp ($~045i) ‘ ] (table 20).
Yi(yh) = —2n7(26) 7' Di; (dy,,) = 0-516 exp (—1-5341)

For the purpose of comparison accurate values of these zeros of Y;(z) and the corre-
sponding Y;(z) have been computed by solving the equation ¥;(z) = 0 by successive approxi-
mation, the values of ¥;(z) and Y3(z) required being evaluated from their ascending series
(Copson 1944, p. 329). The accurate values for the upper zeros are as follows:

SOCIETY

13,1 = 2:352 exp (0-932i), Yi(ns,,) = 0-895 exp (2:881i),
73,2 = 2-205 exp (1-7811), Yi(ns,) = 0-986 exp (—0-959i),
(
(

OF

73,3 = 2:754 exp (2:6711), Yi(n5 5) = 0-696 exp (1-478i),
Yy = 6-416 exp (3-046i), Yi(yP)) = 0-516 exp (—1-5341).
The greatest error in the approximate values derived above is about 0-2 %,. The discrepancies
arise from neglect of n~1p,({) and higher terms in (8-1), and behave relatively as O(n"2)
for large n. We may infer that if n>4 the values obtained by using formulae (10-1) and
(10-3) are accurate to the number of figures provided in the tables. The zeros of the
derivatives are a little less accurately determined however, because the relative error in
their case is only O(n™%).

Previous numerical information on the complex zeros of Bessel functions is almost non-
existent, save for orders 0 and 1. Complex zeros of ¥, and Y, are given by the National
Bureau of Standards Computation Laboratory (1950, pp. 405-406), for example,

y
A B

gy, = —0-50274 3273-1-0-78624 3714i, 7}, = 0-57678 5129+ 0-90398 4792i.
The tables given here yield the approximate values

Mi,1 = — 04864 0-786i, 71 = 0-604 - 0-784i.

SOCIETY

It is remarkable that formulae (10-1) and (10-2), which were derived on the assumption
that » is large, should give reasonable results even for n = 1.

Computation of the tables
The method used for computing tables 1 to 2¢ is not without interest. The asymptotic
expansions (8:9) to (8:11) were used to obtain all the quantities required as accurately as
the series permitted. The values so obtained were then checked by using ascending series
44-2

OF


http://rsta.royalsocietypublishing.org/

A

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I

A A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

358 F. W. J. OLVER ON

to recalculate the values of Di,, and Di,, at the zeros. When this check failed, particularly
for s = 1 and 2 where the asymptotic series yielded insufficient accuracy, new values were
calculated by use of Newton’s rule and the ascending series evaluated afresh.

The series used for the zeros near the rays argz = 17 are based on the fact that Airy
functions with argument z e**"! can be expressed in terms of Airy functions with argument
—z; see (8-5). Thus we have

Di, (ze¥i) = Le i {(m—3)iAi (—z) — (m+1)Bi(—z)} (10-5)

Putting z = x+£, and expanding with the aid of Taylor’s theorem and the differential
equation satisfied by Ai (—x) and Bi (—x), we obtain

. . . o , Ny

Di,, {(x-+4) o7} = § e (B (—x) 3 T4, +Fo(—x) 3700, (106)
1 I} — 1 a—fmi e ! o

Di {(x+h) em}=be 7 (B, (=x) 3 06,0+ Fu(—) 3 5], (107)

where F,(—x)=(m—38)1Ai(—x)—(m+1)Bi(—x),

and ¢,, ¥, are polynomials in x, given by
$o =1, ¢, =0, Gy =—4%, g3 =—1, Gy = %,
Yo =0, Y =-—1, ¥y =0, ¥y = %, ¥y =2,
higher members being readily obtainable from the equations
¢r+l = ¢;+x¢79 %r-l—l = %;_¢r

In the numerical application of (10-6) and (10-7), the value of x was taken to be a con-
venient number approximately equal to #(J,, ,e*i) or 2(4,, ;e7*), and the values of
Ai(—x), Bi(—x), Ai’ (—«) and Bi’ (—x) were obtained from the British Association Mathe-
matical Tables (1946). Seven terms of each series ensured six-decimal accuracy.

Tables 3 to 6a were computed using equations (4:7) and (6-7), the values of ¢ being
found by successive approximation using Newton’s rule. All the tables were originally
calculated to six decimal places.

The author wishes to acknowledge the assistance of Miss P. M. Sivyer, Miss J. Staton
and Mrs O. E. Taylor who computed the tables given in this section.

The work described above has been carried out as part of the research programme of
the National Physical Laboratory, and this paper is published by permission of the Director
of the Laboratory.
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TaBLE 1
eini f, B’ (5,) et g,
s mod. phase mod. phase mod. phase
1 2-354 0-095 0-993 2-641 1-121 0-331
2 4-093 0-042 1-136 —-0-513 3-257 0-059
3 5-524 0-027 1-224 2-625 4-824 0-033
4 6-789 0-020 1-288 ~0-519 6-166 0-023
5 7-946 0-015 1-340 2-622 7-374 0-017
TABLE 2a
e—!mi 82,: Dlé (82, s) e‘—%ﬂi 8é,s
s mod. phase mod. phase mod. phase
1 1-227 0-249 0-857 —2-043 2-312 0-100
2 3-279 0-058 1-076 1-061 4079 0-042
3 4-835 0-033 1-184 —2-086 5-515 0-027
4 6172 0-023 © 1258 1-053 6-783 0-020
5 7-378 0-017 1-315 ~2-090 7-942 0-015
TABLE 2b
e’k"i 82,x Dié (62, s) eﬁ‘lli 6/2, s
s mod. phase mod. phase mod. phase
1 2-344 0-056 1-718 0-537 1-057 0-208
2 4-090 0-024 1-967 —~2-612 3:251 0-035
3 5522 0-016 2-119 0-527 4-821 0-019
4 6-787 0-011 2-231 —2-615 6-164 0-013
5 7-945 0-009 2-321 0-526 7-373 0-010
TABLE 2¢
- d2, s Dlé (d2, s) - dé,s
s mod. phase mod. phase mod. phase
1 2-377 —0-150 1-219 1-535 1-241 —0-463
2 4-101 —0-066 1-392 —1-587 3-270 —0-094
3 5528 —0-042 1-499 1-560 4-830 —-0-052
4 6-792 —0-031 1-578 -1-579 6-169 —0-036
5 7948 —0-025 1-641 1-565 7-376 —0-027

OF

359
Bi (4)
f‘"——-k"‘__""ﬂ
mod. phase
0-750 0-466
0-592 —2-632
0-538 0-515
0-506 —2-624
0-484 0-519
Di, (83,,)
—
mod. phase
0-642 —1-070
0-561 2-084
0-520 —1-054
0-494 2-090
0-475 —1-051
Di, (e3,5)
———H——
mod, phase
1-307 2-583
1-026 —0-532
0-932 2-613
0-877 —0-527
0-838 2-615
Di, (d3,,)
—
mod. phase
0-907 1-657
07256 —1-548
0-659 1-584
0-620 —1-562
0-593 1-578
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TABLE 3. |z| AND arg z
[0=arg (§ etm)]

Y -015 =010 -0-05 0-00 0-05 0-10 -015 -010 -0:05 0-00 0-05 0-10
[€] |z| |z| |z| |z] |z| |z| arg z arg z arg z arg z arg z arg z
0-0 1-000 1-000 1-:000 1-000 1-000 1-000 -0-000 —0-000 —-0-000 —0-000 —0-000 —0-000
01 0-952 0-955 0-958 0-962 0-965 0-969 0-063 0-066 0-068 0-070 0-072 0-073
0-2 0-907 0-913 0-919 0-926 0-933 0-940 0-129 0-134 0-138 0-142 0-145 0-148
03 0-864 0-874 0-883 0-893 0-903 0-914 0-197 0-204 0-210 0-216 0-221 0-225
0-4 0-825 0-837 0-850 0-863 0-876 0-890 0-268 0-277 0-285 0-292 0-299 0-304
0-5 0-788 0-803 0-818 0-835 0-852 0-869 —0-342 —-0-353 —-0-362 —0-371 —-0-378 —0-385
0-6 0-753 0-771 0-789 0-809 0-829 0-850 0418 0-431 0-442 0-452 0-460 0-467
0-7 0-720 0-741 0-763 0-785 0-809 0-833 0-497 0-511 0-524 0-535 0-544 0-551
0-8 0-690 0-713 0-738 0-764 0-791 0-819 0-579 0-594 0-608 0-620 0-630 0-637
09 0-662 0-688 0-716 0-745 0-775 0-806 0-663 0-680 0-695 0-707 0-717 0-725
1-0 0-635 0-664 0-695 0-727 0-761 0-796 —-07561 —-0-769 —0-785 —0-797 —0-807 —0-814
11 0-611 0-643 0-677 0-712 0-750 0-789 0-841 0-860 0-876 0-889 0-898 0-905
1-2 0-588 0-623 0-660 0-699 0-740 0-783 0-935 0-955 0-971 0-984 0-992 0-997
1-3 0-567 0-605 0-645 0-688 0-733 0-780 1-031 1-052 1-068 1-080 1-088 1-:091
1-4 0-548 0-589 0-632 0-678 0-728 0-779 1-132 1-153 1-169 1-180 1-186 1-187
1-5 - 0-530 0-574 0-621 0-671 0-725 0-781 —-1235 -—-1257 —1-272 —1-281 —1-286 —1-285
1-6 0-514 0-561 0-612 0-666 0-724 0-786 1-343 1-364 1-378 1-386 1-388 1-384
1.7 0-499 0-549 0-604 0-663 0-727 0-794 1-454 1-475 1-487 1-493 1-492 1-485
1-8 0-485 0-539 0-599 0-663 0-732 0-805 1-570 1-589 1-601 1-603 1-:599 1-587
19 0-473 — — — — — 1-689 — — — — —

TABLE 3a. |z| AND arg z

arg fB1 arg &, ; arg 4., arg 0., arg &5 , arg 67
Kz‘% { (A7 +0-33073) 1 +024009)  (dm—0-20756) 17— 0-33073) - it 24909)  (dn— 5. 46335)
e |z] arg z |z| arg z |z| arg z |z| arg z |z| arg z |z] arg z
0-0 1-000 —0-000 1-000 —0-000 1-000 —0-000 1-000 —0-000 1-:000 —0-000 1-000 —0-000
01 0-986 0-078 0-980 0-077 0-949 0-060 0-942 0-053 0-946 0-058 0-935 0-045
02 0-975 0-158 0-962 0-155 0-900 0-123 0-887 0-109 0-895 0-119 0-874 0-092
0-3 0-966 0-238 0-947 0-235 0-854 0-189 0-835 0-168 0-847 0-182 0-816 0-142
0-4 0-959 0-318 0-934 0-315 0-811 0-257 0-785 0-229 0-802 0-248 0-761 0-195
0-5 0-955 —0-400 0-924 —0-397 0-771 —0-328 0-739 —0-293 0-760 —0-317 0710 —0-250
0-6 0-954 0-482 0-916 0-480 0-733 0-402 0-695 0-360 0-720 0-389 0-661 0-307
0-7 0-955 0-564 0-910 0-563 0-698 0-478 0-654 0-430 0-682 0-463 0-614 0-368
0-8 0-958 0-647 0-907 0-648 0-664 0-558 0-615 0-503 0-647 0-541 0-571 0-432
09 0-965 0-730 0-907 0-733 0-633 0-640 0:579 0-580 0-614 0-621 - 0-530 0498
1-0 0-974 —0-813 0909 —0-819 0-604 —0-726 0-544 —0-659 0-583 —0-705 0492 —0-568
11 0-986 0-897 0-913 0-906 0-577 0-814 0-512 0-742 0-553 0-792 0-456 0-641
1-2 1-001 0-980 0-921 0-993  0-551 0-906 0-482 0-828 0-526 0-883 0-422 0-717
1-3 1-020 1-063 0-931 1-081 0-527 1-002 0-453 0-918 0-500 0-977 0-390 0-797
1-4 1-:042 1-146 0-945 1-169 0-505 1-101 0-426 1-011 0-476 1-:074 0-360 0-880
1-5 1-068 —1-228 0-963 —1-257 0-484¢ —1-204 0-401 —1-108 0-454 —1-176 0:332 —0-966
1-6 1-099 1-310 0-984 1-345 0-465 1:310 0-377 1-209 0-433 1-281 0-306 1-056
1-7 1-134 1-391 1-009 1-433 0-447 1-421 0-354 1-315 0-413 1-:390 0-282 1-150
1-8 1-175 1-470 1-:040 1-:521 0-430 1-536 0-333 1-424 0-394 1-504 0-259 1-247
19 1-221 1-548 1-076 1-608 0-414 1-655 0-313 1-537 0-376 1-622 0-237 1-347
2:0 1274 —1-625 — — — — 0-294 —1-655 — — 0-217 —1-451
21 — — — —_ — — — — — — 0-199 1-558
22 — — — — — — — — — — 0-181 1-669
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=2 15 1313 0253
V5 16 1-316  0-273
I= 17 1318 0294
3u L 18 1:320  0-315
85, ° 19 1322 0338
Z
§'§ 20 1322  0-361
o = 21 — —
22 _ _
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-0-05 0-00
|| []
1-260 1-260
1-271 1-270
1-282 1-280
1-293 1-290
1-304 1-301
1-316 1:311
1-327 1-322
1-339 1-333
1-352 1-344
1-365 1-356
1-378 1-368
1-392 1-381
1406 1:394
1-422 1-408
1-438 1-423
1-456 1-439
1-475 1-456
1-495 1475
1-517 1-496
arg d,,,

17 +0-24909)
l¢|  arg¢
1-260 0-000
1-265 0-015
1-271 0-031
1-276 0-046
1-281 0-062
1-287 0-077
1-292 0-093
1-298 0-109
1-303 0-125
1-309 0-142
1-315 0-158
1-321 0-176
1-327 0-193
1-333 0-211
1-339 0-230
1-345 0-249
1-352 0:269
1:358 0-289
1-364 0-311
1-370 0-334

TABLE 4. |¢| AND arg ¢
[f=arg (§ e t1)]

005 0-10 -015 -0-10
[#] |d] argp  arg ¢
1260  1-260 0-000  0-000
1269  1-268 0012  0-013
1-278  1:276 0025  0-026
1-287  1-285 0037  0-039
1297  1.293 0050  0-052
1-306  1-302 0063  0-065
1316  1-310 0075  0-078
1326  1-319 0-088  0-092
1-336  1-328 0-101  0-105
1-347  1-338" 0-113  0-118
1-358  1-347 0126  0-132
1-369  1-357 0139  0-145
1-381  1-368 0151  0-158
1-394  1-379 0164 0172
1407  1-391 0176  0-185
1421  1-403 0189  0-199
1437 1416 0201  0-212
1453 1430 0213  0-226
1472 1-446 0224  0-239

— — 0-235 —

TABLE 4a. |¢$| AND arg ¢
arg 07, arg 07,

(37—=0-20756 ) (37 =0-33073)
[ arg ¢ || arg ¢
1-260  0-000 1-260  0-000
1273 0012 1275 0-010
1-287  0-024 1291  0-021
1-301  0-036 1306 0-032
1315 0-048 1-322  0-042
1-329  0-060 1-338  0-053
1-344 0072 1355  0-063
1-359 0084 1-372  0-073
1-374  0-096 1-389  0-084
1-390  0-108 1407  0-094
1406  0-119 1425  0-104
1423  0-131 1444  0-114
1441 0143 1464  0-123
1460  0-154 1484  0-133
1480  0-166 1-505  0-142
1-500  0-177 1527 0-150 -
1-522  0-187 1-549  0-158
1545  0-198 1-573  0-165
1-570  0-207 1-597 ~ 0-172
1597  0-216 1-622  0-178
— — 1-648  0-182

-0-05  0-00
arg ¢ arg §
0-000 0-000
0-013 0-014
0-027 0-028
0040  0-042
0-054 0-056
0-067 0-070
0-081 0-084
0-095 0-098
0-109 0-112
0-123 0-127
0-137 0-141
0-151 0-156
0-165 0-171
0-179 0-186
0-194 0-202
0-209 0-218
0-223 0-234
0-238 0-250
0-253 0-267
arg 051
3T —0- 24909)
5] arg
1-260 0-000
1-274 0-011
1-288 0-023
1-303 0-034
1-317 0-046
1-332 0-057
1-348 0-069
1-363 0-080
1-379 0-092
1-396 0-103
1-413  0-114
1431 0-126
1-449 0-136
1-469 0-147
1-489 0-158
1-510 0-168
1-532 0-177
1-556 0-187
1-581 0-195
0-203

1-607

361
0-05 0-10
arg ¢ arg ¢
0-000 0-000
0-014 0-014
0-028 0-029
0-043. 0-044
0-057 0-058
0-071 0-073
0-086 0-088
0-101 0-103
0-116 0-119
0-131 0134
0-146 0-150
0-161 0-166
0-177 0-182
0-193 0-198
0-:209 0-216
0-:226 0-233
0-243 0:251
0-261 0-270
0-279 0-290

arg 67,

- (4m—0- 46335)

|61 arg ¢
1-260 0-000
1-277 0-009
1-294 0-018
1-311 0-026
1-329 0-035
1-347 0-044
1-365 0-053
1-384 0-061
1-403 0-:070
1:422 0-078
1-442 0-086
1-463 0-094
1-483 0-101
1-504 0-108
1-526 0-115
1-548 0-121
1-571 0-127
1-594 0-132
1-617 0-136
1-640 0-140
1-663 0-143
1-686 0-146
1-709 0-148
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000
|2]
1-000
1-081
1-166
1-255
1-348

1-444
1-544
1-647
1-754
1-865

1-979
2-097
2-218
2-342
2-470

2-601
2-735
2-873
3-013
3-157

3-304
3-454
3-607
3-763
3921

4-083

-0-05

2]
1-000
1-081
1-166
1-255
1-347

1-443
1-543
1-646
1-753
1-864

1-978
2-095
2-216
2-341
2-468

2-599
2734
2-871
3-012
3-155

3-302
3-452
3-605
3-760
3-919

4-081

Downloaded from rsta.royalsocietypublishing.org

-0-10

1-000
1-081
1-165
1-254
1-346

1-442
1-541
1-644
1-751
1-861

1-975
2-092
2-213
2-337
2-464

2-595
2729
2-866
3-006
3-150

3-296
3-446
3-599
3-754
3-913

4-074

arg{

1€1 ™~
00
01
02
03
04

0-5
0-6

)

G =
NN=S Vo

-0-15

2]
1-000
1-080
1-164
1-252
1-344

1-439
1-538
1-641
1-747
1-856

1-970
2-086
2-207
2-330
2-457

2-587
2-721
2-858
2-998
3-141

3-287
3-436
3-588
3-744
3-902

4-063

{ arg dj |
(m—0-46335)

2]
1-000
1-073
1-149
1-229
1-313

1-400
1-491
1-586
1-684
1-786

1-891
2-001
2-114
2-230

F. W. J. OLVER ON

TABLE 5. |z| AND arg z

[r=arg(
000 -0-05
arg z arg z
0t  —0-000
0-004
0-007
0-011
0-014

—0-017
0-020
0-022
0-025
0-027

—0-029
0-031
0-033
0-035
0-037

—0-038
0-040
0-041
0-042
0-044

—0-045
0-046
0-047
0-048
0-049

—0-050

=01

-0-10
arg z
—0-000
0-008
0-015
0-022
0-028

—0-034
0-039
0-045
0-050
0-054

—0-059
0-063
0-066
0-070
0-073

—0-077
0-079
0-082
0-085
0-087

—0-090
0-092
0-094
0-096
0-098

—0-100

1 arg z is zero in this column.

TABLE 54. |z| AND arg z

arg ds
(m—0-33073)
arg z |z| arg z
—0-000 1-000 —0-000
0-034 1.077 0-025
0-067 1-157 0-049
0-098 1-242 0-071
0-127 1-330 0-092
—0-154 1421 —-0-111
0-180 1-517 0-130
0-204 1-615 0-147
0-227 1-718 0-163
0-248 1-824 0-178
—0-269 193¢ —0-193
0-288 2-047 0-206
0-306 2-164 0-219
0-323 — —

-0-15 T

arg z %
—0-000 25
0-011 26
0-022 27
0-032 28
0-042 29
—0-051 30
0-059 31
0-067 32
0-074 33
0-081 34
—0-088 35
0-094 36
0-100 37
0-105 3-8
0-110 39
—0-115 4.0
0-119 41
0-123 42
0-127 4.3
0-131 44
—0-135 4-5
0-138 4-6
0-141 4.7
0-144 4-8
0-147 49
—0-150 50

arg d3,
(m—0-20756)
|z| arg z

1-000 —0-000

1-080 0-016

1-163 0-031

1-250 0-045

1-340 0-058

1435 —0-070

1-533 0-082

1-635 0-093

1-740 0-103

1-849 0-112

1-961 —0-121

2-077 0-130

7-87

874
897

-0-05

|2
4-08
4-25
4-41
4-58
4-76

4-93
511
5-29
547
5-66

5-85
6-04
6-23
6-43
6-63

6-83
7-03
7-24
7-45
7-66

7-87
8-08
8-:30
8-52
8-74

8-97

-0-05
arg z
—0-050
0-051
0-052
0-052
0-053

—0-054
0-054
0-055
0-056
0-056

—0-057
0-057
0-058
0-058
0-059

—0-059
0-060
0-060
0-060
0-061

—0-061
0-061
0-062
0-062
0-062

—0-063
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TABLE 6. |¢| AND arg ¢

[r=arg (~0)]

T 0-00 -0-05 -0-10 -0-15 0-00 -0-05 -0-10 -0-15 \T 0-00 -0:05 -0:05
T 16l 16l 18l 1] ags e ags agd 1L~ I¢l el age
00 1:260 1-:260 1:260 1:260 ot 0-000 0-000 0-000 25 0:894 0-894 0-014
0-1 1-240 1-240 1:240 1-240 0-001 0-002 0-002 26 0-884 0-884 0014
02 1-221 1-221 1-221 1-221 0-002 0-003 0-005 2.7 0-874 0-874 0-015
03 1-:202 1:202 1:202 1-202 0-002 0-:005 0-007 2-8 0:865 0-865 0-015
04 1-183 1:183 1-184 1-184 0-:003 0-006 0-009 29 0-856 0-856 0-015
05 1-165 1:165 1:166 1-166 0-004 0-008 0-011 30 0-847 0-847 0-016
06 1:148 1-148 1:148 1-149 ‘ 0-005 0-009 0-014 31 0-838 0-838 0-016
0-7 1-131 1-131 1-131 1-132 0-005 0-010 0-016 32 0:-830 0-830 0-016
0-8 1-114 1-114 1-115 1-115 0-006 0-012 0-018 33 0-821 0-822 0-016
09 1-098 1:098 1-:099 1-:099 ) 0-007 0-013 0-020 34 0-813 0-814 0-017
1-0 1-:082 1-082 1-083 1-084 0-007 0014 0-021 35 0-806 0:-806 0-017
11 1:067 1-:067 1-:068 1:068 0-008 0-016 0-023 36 0-798 0-798 0-017
1-2 1-:052 1-052 1-053 1-:054 0-008 0-017 0-025 3.7 0-791 0-791 0-017
1-3 1-038 1-038 1-038 1-:039 . 0-009 0-018 0-027 38 0-783 0-784 0-017
14 1-024 1-:024 1-024 1:025 0-009 0-019 0-:028 39 0776 0:-776 0-018
15 1-010 1-:010 1-011 1-012 0-:010 0-020 0-030 4-0 0-769 0:770 0-018
1-6 0-997 0-997 0-998 0-999 0-010 0-021 0:-031 41 0763 0:763 0-018
17 0-984 0-984 0-985 0-986 0-011 0-022 0-033 4.2 0756 0:756 0-018
1-8 0-972 0-972 0-972 0-973 0-011 0-023 0:034 4.3 0:750 0:750 0-018
19 0:959 0-960 0-960 0-961 0012 0-024 0:035 4-4 0:743 0-743 0-018
20 0:948 0-948 0-949 0:949 0-012 0-024 0-037 4-5 0:-737 0737 0-019
21 0-936 0-937 0:937 0-938 0013 0:025 0-:038 4-6 0-731 0-731 0-019
22 0-925 0-925 0-926 0-927 0-013 0-026 0-039 4.7 0:725 0:725 0-019
23 0914 0915 0915 0-916 0013 0-027 . 0-040 - 4.8 0:720 0:720 0-019
24 0904 | 0904 0-905 0-906 0-014 0-027 0-041 49 0-714 0-714 0-019
25 0-894 0-894 0:895 0-895 0-014 0-028 0:042 5-0 0-708 0-708 0-019

1 arg ¢ is zero in this column.

TABLE 6a. |¢| AND arg ¢

arg d; , arg dj | ) arg df

%g {(ﬂ—0-46335) (m—0-33073) (—0-20756)
g gl arg ¢ |8 arg ¢ |¢|  arg¢
0-0 1260 0-000 1260 0-000 1260  0-000
0-1 1242 0-007 1241 0-005 1-241  0-003
0-2 1225 0014 1223 0-010 1222 0-006
03 1208 0-021 1205 0015 1203 0-010
0-4 11191 0028 1187 0-020 11185 0013
05 11174 0034 1170 0025 11167 0-016
0-6 1158 | 0-041 11153 0-030 11150  0-019

7 1142~ 0-047 1137 0-034 1133 0022
0-8 1127 0053 1121  0-038 1117 0024
09 11111 0059 11105 0-043 1101 0-027
10 1097  0-065 1089 0-047 1085  0-030
11 1082 0071 1075 0051 1:070  0-032
12 1068 0076 1060  0-055 — —
13 1054 0081 — _ — —

Vor. 247. A. 45
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APPENDIX, SOME PROPERTIES OF THE AIRY FUNCTIONS
Ai (z) AND Bi (z) IN THE COMPLEX PLANE

Asymptotic expansions

Let us write E=2z4, (A1)
_(25+1) (25+3) (25+5) ... (6s—1) . 6s+1
= s1(216)° ’ L= T 1 (A2)
_ 2 3.5 1 5.7.9.111 7.9.11.13.15.171
and  Ll&)=2 & =16 T otiep @ 3i(2te) B A3
_ Qv . 371 5.7.9.131 7.9.11.13.15.191
M(g):sgoz?“ 1 11216¢  2!(216)2 &2 31(216)8 & v
2, Uy o 5.7.9.111 9.11.13.15.17.19.21.231
PO=2 (=) p = Torerez e 4l (216)* g (A
= Uy 3.5 1 7.9.11.13.15.171
Q( >:s§ ) £2sil - 1!2165 3! (216)3 §3+'“’ )
i Do 579131 9.11.18.15.17.19.21.251
R(g) =s§0( ) gzs 1+ 2!(216)2 52 4[(216) 54 (A5)
_ 2, Uy 3.7 1 ,7.9.11.13.15.191
S( ):sg ( ) ngII - 1!216§+ 3'(216) 53
- Then if | z| is large
Ai (2) ~ dmizteE L(—E), Al (z) ~—mizte* M(—E), (|argz|<m), (A6)
~ it l 1 — 1
Ai(—z)~7 ; {cos (£— W)P(£)+§1n(£ 347T)Q(§)}} (|argz | <Em), (A7)
Al (—z) ~mizH{cos (§—§m) R(E) +sin (E—im) S(E)}

Bi(z) ~miztE L), B (2) ~mizteE M(E), (|argz|<im), (A8)

Bi (—2z) ~n~iz7Hcos (§+4m) P(§) +sin (E+4m) Q(E)}
B’ (—2) ~ 72H{cos (E—4m) R(E) +sin (E— m) S(©))
( ze) ~ (2/m)} =471 z7Heos (§— {r T $iln 2) P(E) +sin (E— 47T 4iln 2) Q(&)}
) ~ (2/m)} €747 ZHcos (§+ {n F 4iln 2) R(E) +-sin (E+4n T §iln 2) S(E)} }
(|argz|<%m), (A10)
Expansions (A 6) and (A 7) for Aiand Ai’ may be derived from the well-known asymptotic
expansions of Bessel functions of large argument (Watson 1944, chap. 7), using the relations

| (argzl <t (a9)

Z e:k§7r1

Ai() = 25 KO, AL () = 5T e HPE) -+ HP(E)

AV() == gKi®), AV (2) = g gle P (E) e BB (),

The expansions (A 8), (A 9) and (A 10) for Bi and Bi’ may be derived from (A 6) and (A7)
by means of the relations

Bi (2) = €™ Ai (e z) +eimi Ai (e~¥7iz), Bi’(2) = e¥ Al (e¥712) e AT’ (e7Hi 2).
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Distribution of zeros

This may be investigated by Lommel’s method (Watson 1944, p. 482). Using the
differential equation satisfied by Ai we may verify that

C% (b Ai (az) AT’ (bz) —a Ai (b2) Al (a2)} = (b3—a3) zAi (az) Ai (b2),

d% {a? Ai (az) Ai’ (bz) — b2 Ai (bz) Ai’ (az)} = (a3—b3) Ai (az) Ai’ (b2),

where a, b are constants. Hence if 5% + a3
bAi(a) Ai' (b)) —aAi(b)Ai'(a) b—a
b3 —ad ' b3—a

L a2 Ai (a) AT’ (b) — b2 Ai (b) A¥' (a) a>—b?
fo A (at) A (bt) dt = AL a)s-—bs (b) AT( )“as—bs

f : t Al (at) Ai (bt) dt = LA (0) Ai’ (0),

Ai (0) Ai’ (0).

Suppose now that a is a non-real zero of Ai (z) or Ai’(z), and b is its conjugate @. Then

1 sinf ,. .
——;isin%Al(O) Ai’ (0), (A11)

1 7 —
f ¢ A (at) Al (@) dt = — 5% Ai (0) AT (0) =
. =

1 sin 26

o, I ol VUV | L
fo AY' (at) AT’ (at) dt = — 55— AL (0) Al (0) = — 300 AT (0) AT’ (0),  (A12)

where a=rel’. The integrals in (A11) and (A 12) are necessarily positive and
Ai (0) At’ (0) <0.

In order to avoid a contradiction sin/sin 3¢ and sin 260/sin 3¢ must each be positive and
finite. Thus non-real zeros can only occur in the sector | arg z | <.

Next, we may readily show that for all sufficiently large R there are no zeros in the sector
|arg z | <%m, | z| <R, by examining the changes in arg Ai (z) and arg Ai’ (z) as z traverses
the boundary; on the curved part we use the asymptotic expressions given by the leading
terms in (A 6), and on the rays arg z = 4+£n we use the relations (British Association Mathe-
matical Tables 1946, p. B9) |

Ai (xe¥i) = Je*7i{Ai (x) FiBi(x)}, Al (xe*in) = Le™m {Ai’ (x) FiBi' (x)k

Thus the zeros of Al (z) and Ai’ (z) are all real and negative.

Equations (A11) and (A 12) remain valid with Ai replaced by Bi, but in this case
Bi(0) Bi’ (0) > 0. Hence sin /sin 3¢ and sin 26/sin 3¢ must each be negative, and so non-real
zeros can only occur in the sectors 47 < | arg z | <4m. That Bi (z) and Bi’ (z) do have zeros
in these sectors may be established by examining the changes in arg Bi (z) and arg Bi’ (2)
as z traverses the contour OABCDEQ in figure 16. On this diagram 4B and DE are arcs
of the circle | z | = R, where R is arbitrarily large, and B, D are the points R e#7¥)i  § being
an arbitrary number in the range 0 <0 <4#. The curve BCD has the equation

J{%z%} = constant = £R¥cos 35 =p, (A13)

say; Cis thus the point R(cos$d)? et7i.
45-2
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On 04 we have
AargBi(z) = AargBi’ (z) = 0. (A14)
04 04

On 4B and DE we use the asymptotic formulae given by the first terms in (A 8) and
(A 9) respectively. We find without difficulty

AargBi(2) = —3(r—8)+pto(l), A argBi (2) — Hhn—8)+p-+o(l),
AB AB
0 argBi(z) =—4(3m—0) +p+o(1),  AargBi'(z) = (37 —9) +P+0(1)>} A1)
' DE
where p is defined by (A 13).

oy
)

ETAN AUE
0 , A

Ficure 16.
On EO we use the relations

Bi (xetm) = Le #1{3 Ai (x) +1Bi (x)}, Bi’ (xe¥ml) = Le~#1{3 Ai’ (x) +iBi’ (x)}.
At x = 0 we have (British Association Mathematical Tables 1946, p. 139)

3Ailx)+iBi(x) = f?-;—) (1 +:/1§) ) 3Ai" (x) +iBi' (x) = ,T‘%(_.H—:}g) -
and so I%)argBi (2) = —4m+o(1), EAoargBi’ (z) =3m+o(1). (A1e)
On BCD we have from (A 10)
Bi (z) ~ (2/m)te*™i z7t cos @, Bi' (z) = (2/m)} et ztsin ¢,
where =—2izt—lr—1iln2.
From (A13) we see that Rp = p—Lm.
Hence if R is chosen so that p— £ is a multiple of 7, n7 say, then cos ¢ is real and one-signed
on the contour, and so A arg Bi () — — 48-+o(1). (A17)
Similarly, if p-+ 47 — o then
B%DargBi’ (z) = 4$0+0(1). (A18)

Combining the results (A 14) to (A 18), we find that
A argBi(z) =2p—im+o(1) = 2nm+o0(1),

OABCDEO

A argBi' (z) = 2p+dm+0(1) = 2nm+0(1).
0ABCDEO

Thus if n is a sufficiently large positive integer, the contour OABCDEO has inside it n zeros of
Bi(z) if R = {3(n+ 1) wsec 30}, and n zeros of B’ (z) if R = {$(n—}) msec $6}1.
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Asymprotic expansions for the large zeros
Let us write?

T) =AU+ A2~ fy AR A~ ),
Uln) =@ (1 —Fgpu >+ 4~ —2-0788547°+ ),

3
V() =7 (L At~ R A+ 43— ),

» (A19)

~%
W =" (1= Fap 24— 4R o+ ), |

and let the sth negative zeros of Ai (z), Ai’ (z), Bi (z) and Bi’ (z) be denoted by a, 4;, b, and
b; respectively. Then if s is large :

a;~—T(4), , ag~— Ulu),
Al (a,) ~ (=)~ P(A), Al (a) ~ (=) W(p), (A20)
where A=3n(4s—1), 4= 3n(4s—3),
and by~— T(’l) s b.,v ~—=U(u),
Bi' (b;) ~ (=) V(A), Bi (b;) ~ (=) W(k), (A21)
where A =3n(4s—3), u=3m(4s—1).

Similarly, if the complex zeros of Bi (z) and Bi’ (z) in the sector 47 <arg z<}w arranged
in ascending order of modulus are denoted by f; and fs respectively (s =1,2,...), then
for large s

B~ e T(A), o~ et Ulp),
Bi' (4;) ~ (=) 2t e V (1), Bi (f;) ~ (=)t 2t et W(p), (A22)
where A=3{(4s—1)n+2iln 2}, u=3{(4s—38)m+42iln 2}.

The zeros in the sector —}m <argz< —3w are the conjugates j,, /..

The expansions (A 20), (A 21) and (A 22) may be derived by reversion of the expansions
(A7), (A9) and (A 10) respectively. The higher coeflicients in formula (A 19) for V(1)
and W(u) are most conveniently obtained from those of 7(1) and U(g) by means of the
relations (Olver 1950, equation (2-15))

. AN . , dag\ 1
A (e) = (=) Al (4 5E) (A23)
in which s is regarded as a continuous variable.

1 Additional terms in the formulae for T(A) and U(u) are given in British Association Mathematical Tables
(1946, p. B48).
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